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Abstract

The global positioning system (GPS) has become an ubiquitous source for nav-

igation in the modern age, especially since the removal of selective availability at the

beginning of this century. The utility of the GPS is unmatched, however GPS is

not available in all environments. Heavy reliance on GPS for navigation makes the

warfighter increasingly vulnerability as modern warfare continues to evolve.

This research provides a method for incorporating measurements from a massive

variety of sensors to mitigate GPS dependence. The result is the integration of sensor

sets that encompass those examined in recent literature as well as some custom navi-

gation devices. A full-state extended Kalman filter is developed and implemented, ac-

commodating the requirements of the varied sensor sets and scenarios. Some 19 types

of sensors are used in multiple quantities including inertial measurement units, single

cameras and stereo pairs, 2D and 3D laser scanners, altimeters, 3-axis magnetome-

ters, heading sensors, inclinometers, a stop sign sensor, an odometer, a step sensor,

a ranging device, a signal of opportunity sensor, global navigation satellite system

sensors, an air data computer, and radio frequency identification devices. Simulation

data for all sensors was generated to test filter performance. Additionally, real data

was collected and processed from an aircraft, ground vehicles, and a pedestrian.

Measurement equations are developed to relate sensor measurements to the

navigation states. Each sensor measurement is incorporated into the filter using

the Kalman filter measurement update equations. Measurement types are segregated

based on whether they observe instantaneous or accumulated state information. Accu-

mulated state measurements are incorporated using delayed-state update equations.

All other measurements are incorporated using the numerically robust UD update

equations. Simulation results show the expected performance of improved navigation

state estimation over time with the systematic addition of each sensor.
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All Source Sensor Integration

Using an Extended Kalman Filter

I. Introduction

T
he advent of the Global Positioning System (GPS) ushered in a new era of

navigation. Never before could a platform pin point its exact location on Earth

with such accuracy and precision. Because of the advantages it offers, the Department

of Defense has become extremely reliant on its use. Under many situations, the

performance of GPS can be degraded or blocked entirely. This includes degradation by

environment, terrain, jamming, and even the possibility for malicious misinformation

attacks. January of 2010, the Chief of Staff of the Air Force delivered a warning stating

our dependence on GPS makes us vulnerable, and that modern warfare will only

continue to require higher precision navigation abilities [12]. Numerous research efforts

have been undertaken to meet the evolving navigation requirements while lessening

dependence on GPS. Although, no current technology can provide the equivalent

navigation reliability of an undenied GPS constellation over time, the overall goal is

to maintain high precision navigation information as accurately as possible for as long

as it takes to regain quality GPS.

This thesis combines multiple previous methods to navigate using sensors in

GPS-limited and denied environments. Positioning sensors of all types in multiple

quantities are used to maintain accurate positioning information. Sensors were chosen,

to encompass and combine the majority navigation measurement types employed

in recent literature as well as to examine some custom devices. To the author’s

knowledge, no other previous research project can match this project for the number

of types of sensors used in multiple quantities.

This research focuses primarily on the measurements and their relations to the

navigation states. Measurement equations are developed for sensor preprocessed mea-
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surements, and these navigation equations are not dependent upon the integrating

filter. That is to say, the measurements were combined using an extended Kalman

filter, but the same measurement equations could be adapted to any other filter such

as the unscented Kalman filter, particle filter, etc.

1.1 All Source Positioning Navigation

The All Source Positioning Navigation (ASPN) program is headed by the De-

fense Advanced Research Agency (DARPA) and is one such effort to mitigate de-

pendence on GPS. For the ASPN program, a standardized set of data from common

navigation sensors in multiple quantities, on multiple platforms, and in multiple sce-

narios was collected. The ultimate goal of the program is to provide low-cost, robust,

effective, navigation methods to the military operator in any environment regardless

of GPS availability.

The role of this thesis in the ASPN program is to create standardized solution

from the massive test bed of sensor data. At the time of the writing of this thesis,

the real data was not available. Therefore, all data used in this thesis was simulated

to represent the data that was to be received from the ASPN program.

1.2 Research Objectives

The main objective for this project is to provide an analysis of the effect of

the fusion of multiple sensors on a platform’s navigation solution. The integrity of

the analysis is tested using simulation data. The effect on the navigation solution

is observed by viewing the systematic addition of each individual sensor in designed

scenarios. Sensors that provide information that is not directly observable or whose

information becomes difficult to view in the presence of more descriptive sensors, are

showcased in specialized scenarios where their performance can be observed.

2



1.3 Scope

Due to the seer size of the this project, the scope for sensor integration is

mostly limited to methods currently available in literature. These methods have been

expounded upon where necessary. What makes this research unique is the culmination

of all these methods into a single project. All measurement equations are written to

be matched directly to real data.

In addition, ASPN constraints required only ”textbook” solutions for the de-

velopment of the standard navigation solution to include the implementation of an

extended Kalman filter. Part of the ASPN methodology was that no prior information

with regard to sensor sets is known for filter development. Therefore, development

of the filter required extreme flexility and relatively simple design. Due to this con-

straint, all measurements, including inertial data, was integrated into the filter using

the traditional Kalman filter update. Processing time was not part of the APSN con-

straints, therefore treating inertial data as measurements updates was appropriate

for this project. Bringing in inertial data using measurement models over error state

estimation greatly simplified the problem of including multi-INS of various grades, or

no INS at all, in the navigation system.

Multiple quantities of sensors are examined to analyze the combined effects.

Certain sensors, particulary IMUs, are examined in various measurement qualities in-

cluding MEMs and tactical grade. Other sensors are used in different configurations

composing new sensors. Examples include single cameras and stereo camera pairs

which are treated as separate sensors, and an optical sensor that detects stop signs.

The cumulative list of sensors examined in this project are of the type: inertial mea-

surement unit (IMU), GNSS position/velocity sensor, GNSS pseudorange/delta-range

sensor, monocular optical camera, odometer, barometric altimeter, step sensor, stop

sign sensor, 3D laser scanner, 3-axis magnetometer, ranging device, 2D laser scanner,

terrain-referenced altimeter, inclinometer, magnetic compass, radio frequency identi-

fication (RFID), signal of opportunity, air data computer, and stereo optical camera.

3



Sensor measurement updates in this thesis are performed independent of other

sensor measurements; however, some of these measurements were preprocessed using

information from other sensors. Measurement independence however is preserved

as alternate sensor aiding uses the measurements indirectly to speed processing and

increase accuracy.

1.4 Thesis Overview

Chapter II of this thesis contains the mathematical background necessary to

complete this work as well as mathematical notation description. This includes de-

tailed descriptions of the conventional Kalman filter, extended Kalman filter (EKF),

Kalman filter delayed state equations, coordinate frames and coordinate frame trans-

formations. Also in this chapter is a discussion of previous research projects over

topics that relate to this thesis.

In Chapter III, each sensor that was used in the project is discussed. This in-

cludes measurement models, Kalman filter measurement update equations, incorpora-

tion of lever arms, and sensor error states specifics. The main filter coding algorithm

is explained as well in this chapter, since one of the main difficulties of this thesis

was simply handling the plug and play nature of the massive sensor test bed. This

includes no assumptions with regard to the sensors in operation during a run, number

of states being estimated, or filter run time.

In Chapter IV the results of this project are presented with comparison between

number of sensors used and accuracy. Sensors are added systematically for various

scenarios and the solution error and covariance are discussed. This is performed for

simulation data only as the real data for the project did meet the time constraints on

the delivery of this thesis.

Chapter V is a summary of the previous chapters of this thesis. In the thesis

summary, filter performance and future work is discussed. An overview of the overall

4



code implementation is discussed as well as implementations and methods that worked

well and what would be done differently if this thesis were to be done over again.
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II. Background

T
his chapter outlines the background material required to complete this thesis.

Required reference frames for navigation and the translations between them are

discussed in detail. The preferred attitude representation representation method is

chosen as well as the conversion between other methods which is useful for many of

the varied measurement set that will later be analyzed in chapter III. Finally a brief

overview of Kalman filter theory is given a with some deviation from the standard

implementations.

2.1 Mathematical Notation

The mathematical notation in this document is laid out in this section. Variable

names and annotations have been chosen to be both intuitive and meaningful wherever

possible.

2.1.1 Dimension. The navigation in this thesis is carried in three dimen-

sional space and the following notation is used to differentiate quantity dimension.

Scalars are signified by a lower or upper-case case variables (e.g., x). Vectors are by

default given in column form and represented using lower-case bold letters (e.g., x).

Matrices are represented using uppercase bolded letters (e.g., X).

2.1.2 Homogeneous Pointing Vectors. Homogenous pointing vectors are

defined to have 1 for the last element (i.e., all elements divided by the z dimension)

[31]. These quantities are denoted by an under bar (e.g., x). They are associated

with the native camera measurement in this document.

2.1.3 Other. Physical quantities have associated errors and will be repre-

sented by a tilde or hat accent (e.g., x̃ or x̂). Theoretical/true quantities omit the

accent. Unit vectors are identified using an over bar (e.g., ‖ū‖ = 1).

6



2.2 WGS-84 Reference System

The 1984 World Geodetic System (WGS-84) [6] reference system models the

shape of the earth as an ellipsoid. The ellipsoid shape is used due to the earth’s

bulging at the equator and flattening at the poles. The ellipsoid is defined to rotate

about the z axis coincident with the polar axis. The position of any point p on the

ellipsoid is described using a geodetic latitude (L), longitude (λ) and altitude (Alt).

Geodetic latitude is defined by the angle of a line that passes through some point p

normal to the surface of the ellipsoid with the equatorial plane. Now considering a

plane that contains this line, a second ellipsoid is formed by the intersection of this

plane and the ellipsoid. The radius of curvature of this new ellipsoid at point p is

called the radius of curvature in the prime vertical [25] and is given by:

Rp =
a

(1− e2 sinL)1/2
(2.1)

Where a is the semi-major axis and e is the eccentricity of the ellipsoid. The radius of

curvature that fits the meridian at the latitude chosen is called the radius of curvature

in the meridian and is given by:

Rm =
a(1− e2)

(1− e2 sinL)3/2
(2.2)

The radius of curvature in the prime vertical and meridian are required to convert

geodetic latitude and longitude to a local-level navigation frame, when taking into

account the earth’s ellipsoidal shape.

2.3 Reference Frames

This section includes reference frames designed for tracking the vehicle naviga-

tion states of position, velocity and attitude. Sensor frames are generically described

in this section, however specific sensor frames are only discussed in Chapter III of this

thesis, since there are simply too many to list in multiple locations.
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2.3.1 Inertial Frame. The inertial reference frame, denoted by xi, yi and zi

in Figure 2.1, is the coordinate frame in which Newton’s laws of motion are valid. This

frame originates at the center of the earth with the vertical z axis passing through the

North Pole. The x axis points in an arbitrarily chosen direction that remains fixed

in orientation and together with the y axis completes the right handed Cartesian

coordinate system.

2.3.2 Earth Frame. The earth centered earth fixed frame (ECEF) reference

frame, denoted by xe, ye and ze in Figure 2.1. is initially aligned with the inertial

frame and rotates at the earth sidereal rate. The x axis projects through the prime

meridian at the equator, and the y axis completes the three axis triad using the right

handed convention. The rotation of the earth with respect to the inertial frame in

skew symmetric form is described as:

Ωe
ie =

[
0 0 ωeiez

]T
× (2.3)

where ωeiez is the earth sideral rate about the polar axis and defined in the WGS-84

reference datum described in Section 2.2. The skew symmetric operator × acts on a

3 element column vector ω as shown in (2.4) allowing a vector cross product to be

represented by a matrix vector multiplication.

ω× =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 (2.4)

where Rp is the radius of curvature in the prime vertical defined in (2.1) and e is the

eccentricity of the earth.

2.3.3 Navigation Frame. The north, east, and down (NED) frame, denoted

by N , E and D in Figure 2.1, is commonly used to track the a platform. The NED

frame is fixed at the platform’s center of gravity (COG) throughout navigation. The

8
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Figure 2.1: ECEF, inertial, and NED reference frames from [31]

frame axes are fixed pointing North, East, and Down along the lines of geodetic

latitude, longitude, and altitude. Because of the curvature of the earth, the NED

frame rotates with its earth surface displacement. This rotation rate is described

in [29] as:

Ωn
en =

[
vE

(Rp+h)
−vN

(Rm+h)
−vE tan(L)

(Rm+h)

]T
× (2.5)

Where vE, vN and vD are platform velocities in the NED frame, Rp is the radius of

curvature in the prime vertical given in (2.1), and Rm is the radius of curvature in

the meridian given in (2.2).

The platform position is tracked using the geodetic navigation frame given by

a geodetic latitude, longitude and altitude in units of deg or rad, deg or rad, and

m respectively. This follows a north, east, and up convention. This frame is only

used for the geodetic position. The geodetic frame is related to the NED frame by

a change of units in the north and east channels, and a sign reversal on the vertical

component.
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Figure 2.2: From [31], this figure demonstrates the body frame used in this thesis

2.3.4 Body Frame. Similar to the navigation frame, the body frame is

located on the vehicle and the origin of the frame is placed at the location of the

guidance system [29]. The body frame utility derives from multiple sources such as

describing the platform dynamics, and many (if not most) sensors record measure-

ments in the body frame. In order to navigate with body frame information, the body

attitude must be known to relate it to the navigation frame.

2.4 Sensor Frames

Given the massive array of sensors used in the project, it is impossible to define

a standard frame in which all the measurements are observed. As a result, transfor-

mations must be defined to convert between the sensor frame and the body frame.

This is required show the relationship of the measurements to the navigation states.

In this thesis, sensor frames where defined to match those seen commonly in literature

and are given in the section where the sensor is discussed.
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2.5 Attitude Representations

There are multiple methods of attitude representation in practice. The three

types referenced in this document are direction cosines, Euler angles and quaternions.

These three representations are discussed in the following subsections.

2.5.1 Direction Cosine Matrices. A direction cosine matrix (DCM) is a

nine element rotational matrix. The rows of the body to navigation frame represent

unit vectors in the body frame projected onto the reference axes [29]. Direction

cosines have the benefit of a good physical interpretation, but require nine elements

to describe which is significantly more than other representations.

2.5.2 Euler Angles. Euler angles represent the three angles (φ, θ and ψ)

representing roll, pitch and yaw. Euler angles provide perhaps the most intuitive sense

of attitude representation; however, they have several potential pitfalls regarding their

use. Namely these pitfalls are the discontinuities inherent in trigonometric functions

and high nonlinearity attributes.

2.5.3 Quaternions. Quaternions are four parameter normalized hyper com-

plex quantities where the three complex components form an axis of rotation, and the

real component describes the rotation about that axis. Quaternions are not charac-

terized by the high nonlinearities experienced with Euler angles or gimbal lock. Their

main drawback stems from the more obscure physical interpretation and addition of

a fourth element compared with the Euler angles. Regardless of these drawbacks, it is

generally agreed the advantages outweigh the disadvantages making them most often

the implementation of choice in strapdown navigation systems [11].

Given the prior description of the three main attitude representations, the

quaternion representation will be the method employed throughout this thesis to track

the platform attitude. Transformations can be handled directly using the quaternion

elements; however, the DCM will be used for body to NED transformations to be

consistent with literature and because of the intuitive nature of the operation.
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2.6 Coordinate Frame Transformations

Most coordinate transformations performed in this document are handled by

DCMs. DCMs are very useful for transforming quantities between reference frames

and simply performing rotations within the same reference frame. The general me-

chanics involved with the DCM rotations are described in this section as well some

specific rotations between frames. Other relationships are also given for converting

between frames when more than a rotation is required.

2.6.1 DCM Properties. DCM rotations, are accomplished using the DCM

multiplication as:

va = Ca
bv

b (2.6)

In this example the vector vb is transformed from the arbitrary b frame into arbitrary

a frame via a DCM multiplication.

DCMs have several useful properties [31] that will be utilized in this thesis.

Multiple DCM transformations can be chained together through continued DCM mul-

tiplications as:

Cb
a = Cb

cC
c
a

The inverse of a DCM is equal to its transpose which gives the reverse transformation

as:

Cb
a = (Ca

b )
−1 = (Ca

b )
T (2.7)

Transforming angular rate between reference frames follows the same operation as in

(2.6) when the angular rate is expressed in column vector form. Often it is useful to

express angular rate in skew symmetric form. Angular rate in skew symmetric form

is transformed via a modified DCM equation as:

Ωb
ba = Cb

cΩ
c
baC

c
b (2.8)
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Where Ωb
ba is read as the angular rate from b to a expressed in b, and is the skew

symmetric form of ωbba expressed as:

Ωb
ba = ωbba× (2.9)

2.6.2 Specific Coordinate Frame Transformations. Several DCMs are used

throughout this thesis and are defined here. One such DCM describes the rotation

from the NED frame to the ECEF frame given in [4] as:

Ce
n =


− sin(L) cos(λ) − sin(λ) − cos(L) cos(λ)

− sin(L) sin(λ) cos(λ) − cos(L) sin(λ)

cos(L) 0 − sin(L)

 (2.10)

where L is geodetic latitude and λ is longitude. This DCM only represents the

rotation required to express a vector previously defined in the NED frame into the

ECEF frame. If the geodetic position that was described in the geodetic frame is

desired to be expressed in the ECEF frame, a direct conversion is given by [8] as:

pex = (Rp + h) cosL cosλ (2.11)

pey = (Rp + h) cosL sinλ (2.12)

pez = (Rp(1− e2) + h) sinL (2.13)

Often in this thesis it will we useful to calculate the connecting vector between

two bodies whose positions are defined in the geodetic frame. A useful relationship

that expresses this quantity is given as:

rn =


(Rp + Alt2)(L2 − L1)

(Rm + Alt2) cosL(λ2 − λ1)

Alt1 − Alt2

 (2.14)
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where Rm is the radius of curvature in the meridian defined in (2.2) and rn is the vector

that points from a body located at (L1, λ1, Alt1) to the body located at (L2, λ2, Alt2)

expressed in the NED frame.

One essential DCM describes the transformation between the NED and the

body frame. In terms of the quaternion elements which is the chosen method for

attitude representation in this research, the body to NED DCM is given by [29] as:

Cn
b =


q2

1 + q2
2 − q2

3 − q2
4 2(q2q3 − q1q4) 2(q2q4 + q1q3)

2(q2q3 + q1q4) q2
1 − q2

2 + q2
3 − q2

4 2(q3q4 − q1q2)

2(q2q4 − q1q3) 2(q3q4 + q1q2) q2
1 − q2

2 − q2
3 + q2

4

 (2.15)

Because the NED and body frame are colocated on the vehicle, (2.15) describes the

complete transformation between the two frames rather than only the rotation as was

seen between the NED and ECEF frames. The NED frame is related to the geodetic

frame by unit conversions of the north and east elements and the simple rotation:

Cg
n =


1 0 0

0 1 0

0 0 −1

 (2.16)

where Cg
n is the rotation from the NED frame to the geodetic frame.

For some sensor measurements, the orientation of the sensor is important. In

this thesis, sensor to body frame transformations are handled by a single DCM mul-

tiplication to resolve sensor measurements in the body frame:

f b = Cb
sf
s (2.17)

where Cb
s is the sensor to body DCM and f s is the measured quantity in the sensor

frame. The sensor to body frame DCM includes all information required to resolve

the measurement into the body frame, including the sensor frame and the sensor

mounting orientation.
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2.6.3 Attitude Representation Conversions. Conversions between all three

types of attitude representations are necessary for using the DCM for the transfor-

mation between body and NED frame and also to transform between measurements

of certain sensors. The Euler angles relate to the unit quaternion as:

q1 = cos
φ

2
cos

θ

2
cos

ψ

2
+ sin

φ

2
sin

θ

2
sin

ψ

2
(2.18)

q2 = sin
φ

2
cos

θ

2
cos

ψ

2
− cos

φ

2
sin

θ

2
sin

ψ

2

q3 = cos
φ

2
sin

θ

2
cos

ψ

2
+ sin

φ

2
cos

θ

2
sin

ψ

2

q4 = cos
φ

2
cos

θ

2
sin

ψ

2
+ sin

φ

2
sin

θ

2
cos

ψ

2

The inverse relationship of relating the quaternion parameters to Euler angles has

many applications and is used throughout this document primarily to branch certain

sensor measurements to estimated states and to give an attitude output that has a

meaningful physical interpretation. The conversion is best carried out by forming the

body to NED DCM and using the elements to form the relationship as:

φ = tan−1 c32

c33

(2.19)

θ = sin−1−c31

ψ = tan−1 c21

c11

where the elements of the DCM are given here for clarity:

Cn
b =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 (2.20)

2.6.4 Quaternion Rotations. Occasionally in this document it will be useful

to perform rotations using only the quaternions. The current quaternion attitude can

be represented as multiplications of the individual attitude changes. For example, if
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a rotation p has taken place from the inital attitude q, the current attitude qfinal is

represented by the quaternion multiplication:

qfinal = Q(q)p (2.21)

where the operator Q given in terms of the elements of q is:

Q(q) =


q1 −q2 −q3 −q4

q2 q1 −q4 q3

q3 q4 q1 −q2

q4 −q3 q2 q1

 (2.22)

An individual rotation can be extracted from current attitude using the inverse rela-

tionship of (2.21). In terms of the previous example, this is expressed as:

q = Q(qfinal)p
∗ (2.23)

where p∗ is the quaternion conjugate derived from its complex definition and is given

as:

p∗ =
[
p1 −p2 −p3 −p4

]T
(2.24)

2.7 Gravity Models

The acceleration due by gravity is given by the combined effects of the cen-

tripetal force from the earth’s rotation and earth’s gravitational field [4]. Estimating

acceleration due to gravity plays a huge role in any navigation that incorporates accel-

erators not limited to the horizontal directions only. Even slight errors in the gravity

estimate will cause large errors in the navigation solution over time.

Multiple methods are employed to estimate gravity such as zero velocity updates

and gravity models. Zero velocity updates allow the gravity force magnitude to be

estimated if it is known that the platform is stable. The gravity force vector acting
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on the sensor is then determined if the attitude is known. Gravity models calculate

gravity given a latitude and height above the reference ellipsoid.

For simplicity, this research does not include zero velocity updates. The accel-

eration due by gravity is then independently determined using a gravity model. The

gravity acceleration effects are also mitigated through some aiding altitude, which in

this research is provided by any sensor with altitude measurement capabilities. The

aiding comes through the routine process of measurements updates in the filter.

One main gravity model considered in this document is a basic model from [29]

given by:

gn = g −
ω2
iez(R0 + h)

2


sin 2L

0

1 + cos 2L

 (2.25)

g =


0

0

g(h)

 , g(h) =
g(0)

(1 + h/R0)2
(2.26)

g(0) = 9.780318(1 + 5.3024× 10−3 sin2 L− 5.9× 10−6 sin2 2L)m/s2 (2.27)

where R0 is the geometric mean of radius of curvature in the prime vertical and in

the meridan:

R0 =
√
RpRm (2.28)

2.8 Sensor Error Types

Due to the large number of sensors to be described in this document, the char-

acteristics of the errors seen in the associated measurement equations are generically

explained in this section. There are two types of errors that are used to create the

sensor error models:

- Constant bias
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- Time correlated bias (TCB)

The constant bias is straightforward and is generally used to represent scale factor

errors and other turn-on turn-off biases. These are error terms that are assumed to

change very little throughout a single run. Its propagation is modeled as zero with a

very small amount of added white Gaussian noise (WGN) [20]:

ḃ = 0 + wb (2.29)

The noise strength Qb of the constant bias is given by the autocorrelation of the WGN

as:

E[wb(t)wb(t+ τ)] = σ2
bδ(τ) (2.30)

Qb = σ2
b (2.31)

The constant bias propagation is equivalent to Brownian motion.

The TCB is characterized by a time constant T and the WGN term wb. The

propagation of the TCB bias is defined as:

ḃ = − 1

T
b+ wb (2.32)

The variance and autocorrelation of the TCB bias is given respectively as:

E[b(t)2] = σ2
b (2.33)

E[b(t)b(t+ τ)] = σ2e−|τ |/T (2.34)

Since the steady state value of the autocorrelation of the TCB is the variance σ2
b as

seen in (2.34) [20], the desired value of the noise strength is:

Qb = 2
σ2

T
(2.35)
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2.9 Kalman Filter Equations

Kalman filtering describes a wide field of stochastic state estimation techniques

given a system model and state measurement updates. There are many different types

of Kalman filters used in practice, but all are based on the conventional Kalman filter.

The conventional Kalman filter is an optimal state estimation algorithm as long as

certain assumptions are met, such as that system be linear in nature and that state

and measurement errors be modeled using zero mean WGN.

In many real world applications, the linearity assumption is not valid, which

led to the development of the EKF which will be discussed in Section 2.9.2. The

noise assumption is not always valid on real systems, but characterizes many errors

on measured quantities seen in the physical world. Often, noise-corrupted entities in

hardware are summed together, which by the central limit theorem have probability

density functions (PDF) that can be approximated as Gaussian.

In continuous time, a stochastic model is expressed in the state-space format in

terms of only first-order differential equations:

ẋ(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (2.36)

where x represents the system states, F(t) is the state dynamics matrix, B(t) is the

input matrix, u(t) represents the vector of deterministic inputs, G(t) is the noise

distribution matrix, and w(t) represents WGN state uncertainty with noise strength

Q(t). Since the state estimate noise characteristics are described by a Gaussian PDF,

the state estimate is fully characterized by its mean and covariance:

x̂ = E[(x(t))(x(t))T ] (2.37)

Pxx = E[(x(t))(x(t))T ]− E2[x(t)] (2.38)
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The discrete measurement is then represented by:

z(ti) = H(ti)x(ti) + v(ti) (2.39)

E[(v(ti))(v(ti))
T ] =

 R(ti) i = j

0 i 6= j
(2.40)

where z(ti) is the measurement vector, H is the measurement observability matrix,

and v(ti) is the discretized measurement noise vector. The measurement is also de-

scribed by a Gaussian PDF and fully characterized by its mean and covariance.

Next the discrete stochastic model used by the discrete conventional Kalman

filter is developed. For simplicity, the ti and tj time indexing notation is replaced with

the k subscript to denote the discrete time model. The current time is referred to by

subscript k and the previous time step is denoted by subscript k − 1. The discrete

state-space model is represented by:

xk = Φkxk−1 + Bk−1uk−1 + Gk−1wk−1 (2.41)

where xk are the discrete states, Φk is the state transition matrix that transforms the

states from time tk−1 to tk, Bk−1 is the discrete input matrix, uk−1 is the vector of

discrete inputs, Gk−1 is the discrete noise distribution matrix, wk−1 is the discrete

noise vector with discretized noise strength Qk. In this thesis, no inputs are given

to the filter, so from this point on, Bk−1 and uk−1 are set to zero and ignored in the

Kalman filter equations.

The discrete time measurements take on the form:

zk = Hkxk + vk (2.42)

Rk = E[(vk)(vk)
T ] (2.43)

where each element of (2.42) is the the same as the corresponding element of (2.39),

only expressed with different syntax for consistency with its associated model.
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To make the transformation from (2.36) to (2.41) an equivalent Φk and Qk

must be calculated. These conversions are performed using the matrix exponential

operator, eF∆t, and the three step Van Loan calculation [30] described below.

The discrete state transition matrix can be formed using the Taylor series ex-

pansion of state dynamics matrix. This is expressed to the nth order as:

eF∆t = I + F∆t+
(F∆t)2

2!
+ ...+

(F∆t)n

n!
(2.44)

and from [5], the state transition matrix is defined as:

Φk , eF∆t (2.45)

In cases where the step time is very small and the state dynamics are relatively slow,

a first order approximation will suffice, giving a simplified equation for the state

transition matrix as:

Φk ≈ I + F∆t (2.46)

The derivation for the discrete noise power matrix is slightly more complicated

than the derivation for the state transition matrix. It involves using the three step

van Loan calculation, given as:

A∗ =

 −F GQGT

0 FT

∆t (2.47)

B∗ = eA
∗

=

 · · · Φ−1Qk

0 ΦT

 =

 B11 B12

B21 B22

 (2.48)

Qk , BT
22B12 (2.49)

This process is computationally expensive, especially when performed hundreds of

times per second. Therefore a first order approximation for Qk is very beneficial as

well. By using the first order definition of eA
∗

and performing an element by element
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comparison with (2.47), it is noted that Qk can be written in terms of Φ and the

continuous time noise distribution quantity GQGT as:

Qk = ΦGQGT∆t (2.50)

Using the first order approximation of Φ and ignoring higher order terms, this then

gives a first order approximation of Qk as:

Qk ≈ [I + F∆t]GQGT∆t (2.51)

≈ GQGT∆t (2.52)

2.9.1 Kalman Filter Equations. Given a discrete stochastic system model

and initial conditions, the Kalman filter will provide state estimates over time by

propagating the states as:

x̂−k = Φkx̂k−1 (2.53)

P−k = ΦkPk−1Φ
T
k + Qk (2.54)

In the absence of measurements, the state continues to be propagated and the state

covariance steadily grows. Once a measurement is available to the sensor, the Kalman

gain Kk is computed as:

Kk = P−k HT
k [HkP

−
k HT + Rk]

−1 (2.55)

The estimate is then updated with the measurement, zk, and the best state estimate

and its associated covariance is them computed as:

x̂k = x̂−k + Kk(zk −Hkx̂
−
k ) (2.56)

Pk = (I−KkHk)P
−
k
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The measurement residual and corresponding covariance are given by:

residual = zk −Hkx̂
−
k (2.57)

E[(zk −Hkx̂k)(zk −Hkx̂k)
T ] = HkP

−
k HT + Rk (2.58)

where it is assumed that state estimate and the measurement covariance are indepen-

dent. Next, the filter propagates forward in time ahead using the dynamics model

and current best estimate until the next measurement is available at which point the

measurement update equations are applied again.

As long as the Kalman filter assumptions are correct, the residuals will be

zero mean WGN. The residuals are like the heartbeat of the Kalman filter in that

monitoring them tells how well the system is doing. Residuals exceeding the residual

uncertainty level by more than three standard deviations indicate that either the

measurement is corrupted, or the system is not being correctly modeled or tuned.

2.9.2 Extended Kalman Filter. Most real systems do not have linear dynam-

ics. This violates a fundamental conventional Kalman filter assumption, eliminating

the conventional Kalman filter from use. Hence, the extended Kalman filter (EKF)

and other nonlinear dynamics capable Kalman filers were developed. In the EKF,

it is still assumed that the PDF of the transformed random variables is accurately

estimated using zero mean independent WGN sources by linearizing the system dy-

namics and measurement equations shown in (2.36) and (2.43). The nonlinear system

dynamics and/or measurement equations are generally expressed using:

ẋ(t) = f [x(t),u(t), t] + G(t)w(t) (2.59)

z(ti) = h [x(ti)] + v(ti) (2.60)

These equations are then relinearized after each state estimate propagation.

This creates a new, updated state trajectory every time step. This process minimizes
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the difference between the nominal and true trajectories, improving the overall model

[19].

The first order linearization is performed by forming the Jacobian of the state

dynamics equations evaluated with the current best state estimate given from the last

update or from the initial conditions if this is the starting iteration.

F =
∂f

∂x

∣∣∣∣
x=x̂−

(2.61)

The state estimate is propagated to the current time step by solving the non-

linear differential dynamics equations at the current time with the initial conditions

of the current best state estimate. Solving these differential equations hundreds of

times per second is computationally expensive. This integration can be simplified by

using the state transition matrix to transition the state to the next time step as is

the case with the conventional Kalman filter as:

x̂−k = Φkx̂k−1 (2.62)

where the state transition matrix and discrete noise power matrix are calculated using

the same equations used in the conventional Kalman filter for the state transition

matrix (2.46) and the discrete noise strength matrix (2.51), except the state transition

matrix is now calculated using (2.61). The propagation using (2.62) is only valid when

the time step is relatively small and the dynamics are relatively slow compared to

update times. Fortunately, the simplified forms for the state transition matrix, noise

strength matrix, and nonlinear propagations are most needed when the step times are

small, as many propagations must be computed. For both the EKF and conventional

Kalman filter, the state estimate covariance is propagated to the next time step using:

P−k = ΦkPk−1Φ
T
k + Qk (2.63)
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Once a measurement is presented to the filter, the measurement equation relat-

ing the estimated states to the measurement entity, is linearized about the propagated

state. The Jacobian of the measurement observation equation is formed as:

H =
∂h

∂x

∣∣∣∣
x=x̂−

(2.64)

Because linearization process, the actual measurement presented to the filter is the

measurement residual. With some modification to (2.56), the EKF measurement

update equation is then expressed as:

x̂k = x̂−k + Kk(zk − ẑk) (2.65)

where

ẑk = h(x̂−) (2.66)

The Kalman gain and the estimated covariance are found using the same calculation

as in the conventional Kalman filter repeated here for consistency:

Kk = P−k HT
k [HkP

−
k HT + Rk]

−1 (2.67)

Pk = (I−KkHk)P
−
k (2.68)

Like the conventional filter, these propagation and update steps are iterated through-

out the execution of the EKF.

2.9.3 Delayed-State Kalman Filter Modification. Delayed-state sensors

present a unique challenge to the navigation solution. Rather than presenting a

direct measurement of a state, a delayed-state sensor provides the change of a state

from some previous time. The problem with this measurement is that it provides

information about the state over the entire time period rather than at the instant the
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measurement is obtained. Thus the measurement is modeled rather as:

z =

∫ tk

tk−1

x dt (2.69)

Considering a specific example where the measurement is a position change, the mea-

surement update can be expressed as the integrated velcoity of the valid time interval

as:

z =

∫ tk

tk−1

v dt (2.70)

= position at tk − position at tk−1

The general relationship can be expressed in conventional Kalman filter notation as:

zk = Hkx
−
k + Jkxk−1 + vk (2.71)

In the case of the EKF, the measurement update is modeled as:

zk = h(x−k ,xk−1) + vk (2.72)

with hk represents the nonlinear state measurement equations, and current state and

Hk and Jk are given by:

Hk =
∂h

∂xk

∣∣∣∣
x=x̂−

k ,x̂k−1

, Jk =
∂h

∂xk−1

∣∣∣∣
x=x̂−

k ,x̂k−1

(2.73)

The filter delayed-state update equation is then expressed for the EKF as:

x̂k = x̂−k + Kk(zk − ẑ−k ) (2.74)

ẑ−k = h(x−k ,xk−1) (2.75)
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where the Kalman gain is derived in [5] as:

Kk = [P−k HT
k + Φk−1Pk−1J

T
k ]L−1

k (2.76)

where Lk is the residual covariance given by:

Lk = HkP
−
k HT

k + Rk + JkPk−1Φ
T
k−1H

T
k + HkΦk−1Pk−1J

T
k + JkPk−1J

T
k (2.77)

The state covariance update is given by:

Pk = P−k −KkLkKk (2.78)

The final measurement update is unchanged and performed using the current best

state estimate. The state propagation equations for the delayed-state are the same as

with the conventional Kalman filter for the state estimate (2.53) and the state covari-

ance (2.54). For a thorough derivation of the delayed-state Kalman filter equations,

the reader is referred to [5].

2.9.4 UD Factorization. In real world implementations of the Kalman filter,

numerical precision can sometimes become an issue. Thanks to modern computing,

this does not occur very often. One situation that could lead to numerical issues

would be when updating a large covariance matrix with a very accurate measurement.

The upper triangular/diagonal(UD) factorization Kalman filter propagate and update

equation modifications seek to minimize error caused by limited computer numerical

precision. Then general idea of the UD factorization is to reduce the wide dynamical

range of the state covariance matrix during propagation and update operations [5].

By performing the UD factorization, the filter ensures that the iterated covariance

matrix Pk remains positive semi-definite. UD-factorization comes at a price, however,

as it requires more math operations performed for every filter iteration, considerably

slowing down the filter.
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UD factorization is based on the fact that a symmetric, positive matrix P can

always be decomposed into the UD factored form:

P = UDUT (2.79)

where U is the upper diagonal matrix with a diagonal of ones, nontrivial elements

above the diagonal and zeros below, and D is diagonal [5]. This factorization is

especially useful in this research were many hundreds of updates will be made per

second and numerical stability could be a concern. The process for implementing

the UD factorization is well described in [5, 20] and the reader is encouraged to refer

to these resources for the specific steps and equations. This thesis implements UD

Kalman filter equations for both the covariance update and covariance propagation.

2.10 Unscented Transform

The unscented transform (UT) provides a valuable tool for estimating the mean

covariance of Gaussian random variables transformed by nonlinear equations. The ba-

sic operation involves running strategically placed sigma points through the nonlinear

equations and then estimating the mean and covariance of the resulting distribution

of sigma points. The UT was used in this research primarily in post or preprocessing

scenarios such as converting initial values of roll, pitch, and yaw into quaternion ele-

ments without computing the need to compute complicated Jacobian matrices. The

reader is referred to the original paper by Julier and Uhlmann [14] where the UT is

described in detail. The description presented here is the basic idea as required for

this research.

In the unscented transform, 2N + 1 sigma points are generated where N is the

number of input parameters. The sigma points are generated using:

χ = [x̂ x̂±
√
N + Υ c

√
Pxx] (2.80)
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Where χ is a N × 2N + 1 matrix and Υ is a weighting factor given by:

Υ = α2(N + κ)−N (2.81)

with tuning parameters α and κ set to α = 0.001 and κ = 0. The sigma points are

then passed through the dynamics equation:

Ψ = f(χ) (2.82)

The resulting mean and covariance of the of the sigma points are calculated using:

x̂ =
2L+1∑
i=0

Wm
i Ψi

Pxx =
2L+1∑
i=0

Wc
i (Ψi − x̂)(Ψi − x̂)T ) (2.83)

where weights W are given as

Wm
0 = Υ/(N + Υ)

Wc
0 = Υ/(N + Υ) + 1− α2 + β

Wm
i = Wc

i = 1/[2(N + Υ)] i = 1, ..., 2N (2.84)

and β is another tuning parameter that is set to β = 2 for Gaussian.

2.11 Previous Research

Many of the sensors used in this thesis have been integrated together many times

to provide synergistic effects. It is common to find GNSS sensors fused with an IMU

or cameras fused with an IMU in literature [10, 15, 16, 31]. This research separates

itself from other efforts by the quantity and variety of the sensors combined together.

No other open research project rivals this thesis in the variety of sensor data. Because

of this, this section will primarily cover smaller research projects dealing with clusters
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of sensors that are of interest in this project. These projects aided and provided

insight into the process of building the filter and supporting code for this thesis.

2.11.1 Bancroft/Lachapelle Data Fusion Algorithms for Multiple Inertial Mea-

surement Units. Bancroft and Lachapelle considered advances in micro electro-

mechanical systems (MEMS) allowing access to cheap and physically reliable IMU sys-

tems. This is of great potential interest to consumers such as the military, search and

rescue, athletes, and the visually impaired to name a few. Bancroft and Lachapelle

discuss virtual IMU (VIMU) observation fusion, centralized filter design, and feder-

ated filter design implementations. Past implementations are described including the

prominent method of redundant IMU integration using LMS in which errors are not

modeled or fault tested prior to fusion which is fundamentally flawed [1].

The VIMU LMS method implements a nine parameter estimation model that

includes angular rate, angular acceleration, and the specific force vectors. This re-

quires the use of at least three IMUs to obtain a full rank design matrix. The VIMU

filter requires all IMU updates to be time synchronized. The VIMU does not estimate

the IMU errors prior to fusion but estimates the the error in the combined solution.

This limits the ability to perform fault detection on the VIMU and requires artificial

increases in the covariance matrix to account for the unmodeled errors.

The centralized filter is composed of several separate filter blocks. Each IMU

has its own filter block which contains 21 states that represent the position, velocity,

attitude, biases and scale factors. Each block is updated individually with a time

synchronized prediction cycle. The main advantage, other than simplifying time syn-

chronization, is that the IMU errors are able to be estimated. The main disadvantage

is that blocks are updated by a GPS which must be used repeatedly for each IMU.

The federated filter also contains miniature 21 state filter blocks for each IMU.

The position, velocity, and attitude states are shared, while the IMU error states

remain unchanged in the filter blocks. Two separate types of federated filters, the

federated no reset and the federated fusion reset are discussed.
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The methods of redundant IMU integration discussed in [1] provide a well de-

scribed overview of multi-IMU integration. In particular, the centralized filter pre-

sented the most straightforward approach and most often the best results. However

the IMU setups in [1] were rigidly defined, at least in comparison to the requirements

of this thesis. Overall the main concept that stands out, is that multi-IMU integration

is a challenging task and only recently with the advent of cheap effective systems has

it come under close review.

2.11.2 Soloviev/de Haag Scanning Laser Three Dimensional Navigation.

Soloviev and de Haag [26], investigated the use of a scanning Laser Radar (LADAR)

for three dimensional navigation with an INS in structured environments. The navi-

gation includes using laser scans to provided estimates of both attitude and position

changes.

The hardware employed for the scans was a two dimensional LADAR (SICK

LMS-200) augmented with a servo motor to enable three dimensional scanning. Mul-

tiple lines extracted from scans of planar surfaces are then used to form three di-

mensional planes which are then assigned a unique feature identification number.

The planes must be kept track of with certainty in subsequent frames and this is per-

formed using a feature matching procedure that exploits INS to predict plane location

changes. Motions and angular rates that exceed LADAR factory error specifications

must also be corrected using an INS.

Plane location change was then related to the body position and described

through geometry by the change of the closest point to the observed plane. The

position change was then calculated using least mean squares (LMS) and required at

least three noncolinear planes. The position change accuracy is borrowed from the

GPS dilution of precision (DOP) calculation and assumes all the components of the

plane normal have equal uncertainty.

Attitude change was given by the rotation of the planar normals between scans.

It was determined through a multiple step process that involved estimating the atti-
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tude change DCM that translates a specific plane normal from one scan to the next

using LMS. The LMS attitude estimation requires at least two noncolinear planes to

not be underdetermined.

Soloviev and de Haag provided a useful method for navigating using three di-

mensional planes including determination of attitude without solving nonlinear equa-

tions. The disadvantage to the laser scanner navigation method in [26] is that no

useful information about the position or attitude can be obtained when the system

is underdetermined. Another disadvantage is that the planes could be better utilized

if more was known about the plane parameter covariances. Implementing weighted

least mean squares (WLMS) with the associated DOP calculation from [23] could be

a possible method to provide greater accuracy.

2.11.3 Schneider/et al. Fusing Vision and Light Detection and Ranging.

Schneider/et al. take the a more tightly coupled approach of optical/laser scanner

navigation by forming a direct sensor fusion relationship. The procedure invloves

fusing monocular vision and three dimensional light detection and ranging (LiDAR)

by matching points observed by the scanning LiDAR with visible points in the camera

image. This method has recently received much attention and adds a great deal to

the navigation field. Coupled together, the camera and LiDAR scanner mitigate

disadvantages seen in the single use. While LiDAR scanner has the advantage of

detailed three dimensional scans, it has inferior angular resolution and cannot provide

color which can be useful for object detection [24]. The moncular camera on the other

hand provides color and superior angular resolution when calibrated correctly, but is

unable to provide depth.

LiDAR and vision fusion poses several problems for implementation that are

addressed and are a main contribution of [24]. These difficulties include sensor time

synchronization and occlusion. Time synchronization is handled by shifting the cam-

era exposure time so the exposure is taken as the beam passes the field of view of the

camera. The LiDAR scanner continuously takes data so its time synchronization is
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handled by the bearing information from the incoming data packets. Occlusion arises

from different physical locations of the sensors causing separate scenes to be viewed.

This problem is solved using a cloud segmentation algorithm.

The camera/LiDAR fusion in [24] provides numerous possibilities for naviga-

tion. Pixels with depth information provided by the sensor set could potentially be

matched with camera extracted features allowing for accurate feature initialization,

especially with monocular cameras. Color matched with depth information could also

be used for a very reliable object identification scheme, where cataloging might be

employed with stored object locations. The main disadvantages seen in [24] are the

additional computational burden of solving the occlusion problem, extra hardware

configurations, and sensor synchronization. Ultimately the combination provides an

excellent area for an additional type of sensor. The LiDAR scanner could still be

used separately, since [24] only uses a fraction of the information available from the

LiDAR scanner.

2.12 Summary

In this chapter, the math notation used throughout this document was dis-

cussed. Reference frames are presented as well as the preferred method of rotating

between frames using the DCM. Three main attitude representations advantages and

disadvantages are discussed as well as their relationships to each other. The attitude

representation of choice is chosen from the three main attitude types to be the unit

quaternion.

Physical models and quantities required for real world navigation were discussed

including the WGS-84 ellipsoid reference model and a gravity model. The conven-

tional Kalman filter was described as well as the EKF to handle nonlinear dynamics.

The numerically precise UD Kalman filter update and propagate equations and the

delay-state measurement update equations that account for accumulated type mea-

surements were discussed as well. The UT, an alternate method for estimating the the

covariance of random variables transformed by nonlinear equations was also described.
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Previous research discussed includes projects that combine multiple IMUs, Li-

DAR and vision fusion and LADAR navigation from three dimensional planes. For

each of these research projects, the main interest and method is discussed as well

as the potential advantages and disadvantages of the work. Some of these previous

works contained concepts that were built off of in this thesis while another project

provides future areas of research.
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III. Filter Design and Implementation

T
his chapter outlines the development of the means necessary to combine the

observations from the vast sensor set in order to provide an optimal navigation

solution. This is a challenging task given the diverse set of requirements for the mas-

sive sensor test bed. A basic dynamics model is developed that is tunable according

to the dynamics of each platform with minimal complexity. The filter implementation

that made it possible to relate the diverse requirements of this thesis to the EKF is de-

scribed. Sensor background information required to complete this thesis is presented

as well as relevant implementation equations.

3.1 Generic Platform Dynamics

Part of the ASPN methodology was to provide a standardized complete set of

data to performers, along with a “standard” solution and truth data. In order to

provide the standard solution, a very simple generic dynamics model was adopted.

Scenarios were designed to test navigation in multiple environments with multiple

types and quantities of sensors. Without the rigid setup definition that is available in

most projects where an INS is fitted with a GPS or stereo vision with an INS, a very

flexible approach had to be taken. Thus came the insight for implementing the EKF

which is a very well known and often implemented filter.

All sensor measurements are treated as traditional EKF measurement updates,

including INS data. Often in practice, INS measurements are not treated as mea-

surement updates. A traditional use for the INS is providing a reference trajectory,

and the Kalman filter estimates the errors in the INS trajectory using some other

aiding method such as GPS [5]. This error state approach is advantageous in that

it only requires the estimation of position, velocity, and attitude states, where the

full-state method additionally requires states for acceleration and angular rate. The

main reason the error state approach was not adopted in this thesis was because of the

fundamental goal of not having rigidly defined sensor sets. Scenarios with intermit-

tent INS were considered a possibility as well as scenarios with multiple INS. Though
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methods of combining multiple INS are available in literature, it is still a fairly recent

subject of interest [1], and the better methods are generally not trivial or flexible.

3.2 Dynamics Model Derivation

In this Section, the navigation states are chosen and a general dynamics model

is formed. Taking into account treatment of the IMU measurements as measurement

updates, the required basic navigation states to be estimated are selected as:

x =

([
L λ Alt (vn)T (q)T (ab)T (ωbnb)

T

]
1×16

)T
(3.1)

where L, λ and Alt are the geodetic latitude, longitude and altitude described in

Section 2.2, vn is the NED velocity, ab is the body frame acceleration, q is quaternion

based body attitude, and ωbnb is the body to NED frame angular rate expressed in the

body frame. All navigation states refer to a centrally chosen location on the platform

for the navigation system.

Forming the propagation equations for the states [29], the position states prop-

agate as:

L̇ =
vN

Rm + Alt
, λ̇ =

vE secL

Rp + Alt
, Ȧlt = −vD (3.2)

where vN , vE, and vD are the x, y, and z components of vn. The velocity and

acceleration of the mobile platform, vn and ab, are the velocity and acceleration

caused only by the body’s motion. Thus the effects of the gravity, Coriolis, motion

over a curved surface, etc. are not considered in the dynamics equations, but only in

the measurement update equations. This leads to the simple Newtonian definition of

the propagation of velocity as the body acceleration rotated into the NED frame as:

v̇n = Cn
b a

b (3.3)

A FOGM acceleration model is adopted to describe the acceleration dynamics as

shown in (3.4). This model is tuned to reflect the dynamics of the specific platform
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being observed. This is done in a very generic sense with regard to the physical proper-

ties, expected performance and maneuvers. In one axis, the acceleration propagation

is given as:

ȧb = − 1

Tax
ab + wax (3.4)

where time constant Tax and noise parameter wax is user defined and can be tuned

according to platform dynamics. The relationship is the same for the other two axes.

From [29], the quaternion attitude propagates as:

q̇ =


q̇1

q̇2

q̇3

q̇4

 = 1/2Q(q)

 0

ωbnb

 (3.5)

where the definition of Q is given in (2.22) and repeated here for convenience:

Q(q) =


q1 −q2 −q3 −q4

q2 q1 −q4 q3

q3 q4 q1 −q2

q4 −q3 q2 q1

 (3.6)

Using a FOGM angular rate model tuned to the specific platform, the NED to body

frame angular rate in one axis propagates as:

ω̇bnbx = − 1

Tωx
ωbnbx + wωx (3.7)

where the time constant Tωx and noise parameter wωx is user defined and can be tuned

according to platform dynamics. The relationship is the same for the other two axes

as well. From the vector of combined propagation equations f , the model takes on
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the form seen in 2.59 and repeated here for clarity.

ẋ(t) = f [x(t),u(t), t] + G(t)w(t) (3.8)

Where G(t) is the noise distribution matrix which for the basic dynamics model takes

the form:

G =


03 03

...
...

I3 03

03 I3


16×6

 wa

wω


6×1

(3.9)

with associated noise power matrix Q given by:

Q =

 Qa 03

03 Qω

 (3.10)

Where Qa and Qω are derived from the time constants and noise variances of the

FOGM acceleration and angular rate on each the three axes. This is described for

one axis for both state quantities as:

Qa =
2σ2

ax

Tax
, Qω =

2σ2
ωx

Tωx
(3.11)

3.3 State Space Model

To place the dynamics equations into state space form as seen in equation 2.36,

the Jacobian matrix is formed from the partial derivatives of the nonlinear equations

as:

F =
∂f

∂x

∣∣∣∣
x=x̂

(3.12)

No inputs are considered in this thesis so the input distribution matrix B is set to

zero. Ignoring second order terms, the derived basic linear dynamics matrix F is given

in (3.13). This basic model form will be used in all platform runs regardless of the

sensor set used.
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where ωx, ωy, ωz are the elements of the body to NED frame angular rate as:

ωbnb =
[
ωx ωy ωz

]T
(3.14)

and the components of the body to NED frame direction cosine matrix (DCM) are

given as:

Cn
b =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 (3.15)

The basic navigation states are relisted here for completeness:

x =

([
L λ Alt (vn)T (q)T (ab)T (ωbnb)

T

]
1×16

)T
(3.16)

3.4 Filter Design

The filtering code was required to handle multiple sensors types each possessing

its own specific set of requirements. Some sensors required the addition of error states

at the sensor introduction while others required dynamic sensor monitoring and state

addition and removal. Many sensors required no additional states, but provided an

unknown number of measurements per epoch.

The key to successful filter implementation was ensuring that the filter was

flexible enough to accommodate all sensors requirements, while being uniform enough

not to require numerous modifications per additional sensor incorporation. The coding

was completely handled in Matlabr , and is described by the top level flow chart given

in Figure 3.1. The following sections provide descriptions of the illustrated routines.

3.4.1 Load Settings and Parameters. This portion of the filter contains

all user defined parameters set prior to each filter run and is the first step in the

initialization stages. This includes items such as whether real or simulated data will

be used, lever arm effect estimation and error state parameters for sensors that do
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Figure 3.1: Top level filter flow diagram
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not provide it (Note: only simulated data and results are used in this thesis due to

the lack of availability of ASPN real data at the time of writing). After this process,

a configuration structure is created.

3.4.2 Load Scenario and Sensor Information. Once the user defined com-

mands are stored, the filter reads in the scenario and sensor information. Each sce-

nario is described using a configuration file. The configuration file provides essential

information about the setup including platform type, initial state values, sensor lever

arms, orientation, sensor names, and sensor file names. The sensor lever arms are

defined in the body frame. The orientation of the sensor includes both information

with regard to its orientation on the platform and its specific sensor frame. That is,

the orientation DCM rotates quantities directly from the sensor frame into the body

frame. The sensor file names refers to files that contain sensor metadata, file informa-

tion, and measurements. The metadata describes the properties of the sensors such

as measurement noise and error state characteristics, as well as database information

for sensors that require it. File information describes items such as the number of

measurements taken, and sensor start and stop times for coding only.

From this step, the filter is aware of every sensor that will appear at some point

during the run. At no point in the filter is this information used to improve the

estimate. It is only used to provide simpler code layout and lower computational

burden where possible. Most sensor parameters such as measurement noise strength

and error state values are contained in the sensor metadata.

Once all the available sensor information is retrieved and stored, the filter is

initialized. Initial state estimates are provided in terms of the mean and covariance.

All provided initial state means are provided in the same units as the estimated

states, with the exception of the attitude which is provided as a DCM. The initial

attitude is converted from DCM to quaternion representation using the UT of (2.19)

substituted into (2.18) which provides an estimated quaternion mean and covariance.

The position covariance is provided in units of meters which is readily converted to
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the estimated states covariance units of rad2 through (3.17).

Ppn =


1
R2
E

0 0

0 1
(RE cosL)2 0

0 0 1

Ppn0
(3.17)

where RE is the mean radius of the earth and Ppn0
is the initial position covariance.

All other covariances are then given in the units of the estimated state.

3.4.3 State Descriptor. Multiple state additions and removals are performed

throughout runs depending on the sensors to be implemented; therefore, no set state

setup could be assumed at any time during the filter run. A method was devised to

track filter states using a state descriptor structure. Sensors are allotted user-defined

state descriptors which are unique identification keys. Since the list of sensors that

will be used at some point during the run is provided in initialization, each sensor is

assigned with a finite number of descriptors. Sensors that have a set number of states

are given a fixed number of required descriptors. Sensors that have changing state

requirements are given a set amount that are recycled throughout filter operation.

The descriptors are saved in the main state structure as separate fields under the

name that the sensor has been given at filter initialization. When states are added, as

will be explained later, the descriptors of all estimated states are copied into a single

state descriptor vector. At the start of a run, the state descriptor vector contains

only the addresses of the basic 16 navigation states, but as sensors are added, the

number of held keys increases. The indices of the addresses in the state descriptor

vector correspond to the same indices of the states in the state estimate vector and

covariance matrix. That is, a particular sensor state can be retrieved from the state

vector by copying the sensor’s unique descriptor keys stored under its name and

searching the state descriptor vector for those keys. When the keys are matched in

the state descriptor, the corresponding indices of the match give the indices of the

state quantities in the state estimation vector.
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Along with keys, idle time limits are assigned to the sensors in order to prevent

estimating states that are no longer relevant, such as when a sensor is no longer

operating. The idle time is calculated as the current time minus the time the sensor

last provided a measurement. When a sensor’s idle time exceeds a predetermined

threshold, the sensor states are removed from the filter set of estimated states.

3.5 Measurement Retrieval

The measurement retrieval routine’s primary concern is obtaining the measure-

ment from a buffered data structure. The data structure is populated by the binary

data files that contain the sensor measurements. Buffering is only performed here to

reduce computation time for opening and closing files. The only filter control this

function possesses is the ability to end filter iteration when it detects the end of mea-

surements. All other control is providing to the sensor management routine described

next.

3.6 Sensor Activity Monitoring

The sensor management routine acts on the data provided after the measure-

ment is retrieved. This includes calculating sensor idle times, updating measurement

numbers for variable measurement number sensors, providing the sensor state addi-

tion/removal flag, and all other sensor operation information.

3.6.1 Camera Management. Tracking features of multiple cameras requires

a significant amount of bookkeeping. Each feature requires the addition of three states

to the state vector, potentially adding significant computational burden. Feature ID

tracking lists are zero padded to the user defined max feature amount per camera.

Since tracking features is computationally expensive and there is no need to track

features that are not receiving new measurements, each feature idle time is monitored

at every camera measurement update. Every time a camera measurement is available,

the measurement feature IDs are checked with the current tracked feature list. Positive
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identifications have their idle times set to zeros, are matched, and then saved for

measurement update. Tracked features that are idle longer than the user defined

threshold are zeroed out in the feature ID tracking list.

New features in the measurement replace zero spots in the tracking list up to the

available amount. Left over zero elements of the tracking list that were not previously

zero at the completion of the last update are then flagged for deletion. The tracking

list is then sorted by moving all zero elements to the end of the tracking list. The

total number of tracked features is then given by the number of non-zero elements of

the tracking list. The information about the camera is then passed to add and remove

state routines as well as the measurement update routine.

3.6.2 Delayed-State Sensor Management. Multiple delayed-state sensors

cannot be handled in the measurement update equation as given in Chapter II. Dur-

ing sensor management, the update sensor list is checked for multiple delayed-state

sensors. Multiple instances are incorporated serially by allowing a zero time step

propagation for as many times as it takes to include all the sensors.

3.6.3 Activity Masks. In addition, this routine provides logical masks de-

scribing all sensor activity to remove redundancy. The activity masks refer to lists

that contain items such as sensor names, type, measurement number, etc. This is used

to find whether sensors are considered operational, names of sensors providing mea-

surements this time step, sensors requiring states, measurement vector size buffering,

etc. These masks are reused wherever necessary in the remainder of the filter.

3.7 Addition and Removal of States

Based off information provided by the sensor activity monitoring routine, sensor

states are added or removed. Generally this is due to the addition of a new sensor or

sensor stagnation, but with the camera is performed constantly as new features are
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observed and stagnant features are removed. For non-cameras, the process is routine

and straightforward.

3.7.1 State Addition. Given a list of names of additional sensors, the num-

ber of additional required states is calculated. Looping through the sensor list, the

states are initialized and appended to the end of the state estimate vector. The state

covariance is initialized as well and appended to the bottom right corner of the state

covariance matrix. Most sensor states are error states and thus initialized to zero with

zero cross-covariance to other states. Exceptions to this rule are explained on a case

by case basis in Sections 3.11.1 - 3.11.17. Assigned sensor addresses are appended to

the state descriptor and provide physical location correspondence between the state

estimate vector and covariance matrix for future use.

3.7.2 State Removal. The main difference between state addition and state

removal is that no knowledge of the state descriptor is required to add states. State

deletion is handled by compiling the list of states to be deleted as the sensor change

list is iterated through. The states are not actually deleted until the iterations are

complete. Deletion of the state estimate involves deleting the state quantities from

the state vector and removing the corresponding covariance terms from the covariance

matrix. Removing the covariance is illustrated in one dimension by locating the state

and then removing the entire row and column that it touches.

3.7.3 Camera State Addition/Removal. Camera states require special treat-

ment, since their addition and removal occur on such a regular basis, and deletion of

a state does not mean the removal of the sensor. Rather than only deleting states, the

camera replaces them with new available features. This comes directly from the fact

that cameras provide so many features that it is impractical to add states for every

feature. As such, many features must be ignored until room is available. For compat-

ibility with the other sensors, an additional routine was added so that replacements

are handled separately from the add and remove sensor routine. Replaced states are
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simply cleared of the past estimated values and re-initialized in value and covariance

using the procedure described later in Section 3.11.3. The state descriptor remains

the same. States that must be deleted are reported to the main addition and removal

state routine and treated like normal state removals.

3.7.4 State Addition/Removal Residual Clean Up. Delayed states require

the state transition matrix that was valid at the previous measurement to be resized

for each delayed-state sensor when the state estimate vector size changes. This is

accomplished for added states by zero padding and appending the identity matrix

with size equal to the number of additional states. For state deletions, the elements of

the state transition matrix are deleted in the same manner as the covariance matrix.

This method is valid, because sensor states are not dynamically coupled with any

other states. This step ensures matrix dimensions agree for the delayed-state update.

3.8 Model Linearization

Model linearization occurs every time step about the previous measurement

update. Indexing masks, provided from matching sensor state descriptor keys in the

state descriptor vector, describe the vertical and horizontal placement of the noise in

the noise distribution matrix G which is populated as:

G =



0 . . . 0
...

...

0
. . . 0

I 0

0
. . . 0

0 0 I


N×W


wa

wω

...

wN


W×1

(3.18)
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where W is the total number of required noise terms and N is the total number of

states. The associated basic model noise strength matrix Q is given by:

Q =


Qa 0 . . . 0

0 Qω
...

...
. . . 0

0 . . . 0 QN


W×W

(3.19)

3.9 State Propagation

State propagation is handle differently, depending on the step size between

propagations. The dynamics matrix F generally changes slowly compared to the

frequency of measurements received, especially since high rate IMU measurements are

almost always available. Given a user-defined max time step threshold based on the

current platform, the state propagation for very small time steps is handled by a first

order linear propagation (2.62). For large time propagations, the nonlinear dynamics

equations must be integrated. This thesis uses the Matlabr ODE45 algorithm which

employs a Runge Kutta integration scheme for the nonlinear equation integration.

The state covariance is propagated using the UD propagate equations.

3.10 Measurement Incorporation

Measurement incorporation provides the necessary function of populating the

measurement update equations described in Sections 3.11.1 - 3.11.17 with the state

estimates, measurements, modeled values and other necessary parameters, and then

performing the state estimate update. During the measurement update, other tasks

with regard to delayed-state sensors, residual monitoring, and quaternion normaliza-

tion are performed. To incorporate delayed state measurements, the delayed-state

equations are modified to account for updates that occur during delayed-state mea-

surement intervals. When no delayed-state sensors are present, the measurement

update is performed using the UD update equations.
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Residual monitoring is performed at every measurement update cycle. Measure-

ment residuals that extend beyond three times the residual standard deviation are

flagged and the associated measurements are deleted. Then the measurement update

is performed, and the updated state estimate is saved.

3.10.1 Delayed-State Modifications. In Section 2.9.3, the delayed-state

Kalman gain and state covariance update equations are formed assuming that no

other updates will take place during the interval that the delayed-state measurement

is valid over. That is, it is assumed that the best estimate at the time of the previous

measurement is related to the propagated states as:

xk−1 = Φ−1
k−1x

−
k −Φ−1

k−1wk−1 (3.20)

This is not true in this project. It is highly likely that an update occurred in the

interval. To account for updates that occur in the measurement interval, we return to

the derivation of the delayed-state Kalman gain and updated covariance in(2.76) and

(2.78) respectively. The modified delayed-state Kalman gain and covariance update

is formed in [5] using the Kalman gain and state covariance update equations where

it is not assumed that the measurement and process noise are independent:

Kk = (P−k HT
k + Ck)[HkPkH

T
k + Rk + HkCk + CT

kHT
k ]−1 (3.21)

Pk = P−k −K−k [HkPkH
T
k + Rk + HkCk + CT

kHT
k ]Kk (3.22)

where Ck is a crosscorrelation parameter between measurement and process noise. To

adjust these equations to the delayed-state case, the following replacements must be

made in (3.21) and (3.22):

Hk → Hk + JkΦ
−1
k−N (3.23)

Rk → Hk + JkΦ
−1
k−1Qk−1Φ

−1T
k−NJTk (3.24)

Ck → Qk−NΦ−1T
k−NJTk (3.25)
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where Φk−N is the cumulative state transition matrix and Qk−N is the accumulated

process noise calculated every update cycle, and Hk and Jk are the linearized mea-

surement equations:

Hk =
∂h

∂xk

∣∣∣∣
x=x̂−

k ,x̂k−1

, Jk =
∂h

∂xk−1

∣∣∣∣
x=x̂−

k ,x̂k−1

(3.26)

The cumulative state transition matrix, Φk−N , is given by:

Φk−N =
k−1∏

M=k−N

ΦM (3.27)

and Qk−N is given by:

Qk−N =
k−1∑

M=k−N

QM (3.28)

Now considering the estimated states, in order for the delayed-state equations

to be valid, the updates from other sensors since the time the specific sensor gave its

last measurement must be removed. In this thesis, the state change is accumulated

at every measurement update and the extracted from the current best estimate when

the delayed-state sensor provides its next measurement. The modified state is then

used to form the measurement update equations as:

zk = h(x̂−k −∆xk, x̂k−1) + vk (3.29)

where ∆x is the accumulated state changes due to updates from the other sensors

and is calculated at each time step as:

∆xk = x̂k − x̂−k + ∆xk−1 (3.30)
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Table 3.1: Sensor section reference guide.
Sensor Name Section Senosr Name Section
Air Data Computer Section 3.11.1 3-axis Magnetometer Section 3.11.10
Barometric Altimeter Section 3.11.2 Odometer Section 3.11.11
Cameras Section 3.11.3 Pseudorange/Delta Range

Sensor
Section 3.11.7

Compass Section 3.11.4 Ranging Sensor Section 3.11.12
GPS Section 3.11.7 RFID Device Section 3.11.13
Inclinometer Section 3.11.15 Signal of Opportunity

Sensor
Section 3.11.14

INS Section 3.11.6 Stop Sign Sensor Section 3.11.15
2D Laser Scanner Section 3.11.8 Step Sensor Section 3.11.15
3D Laser Scanner Section 3.11.9 Terrain Referenced Al-

timeter
Section 3.11.17

3.11 Sensor Measurement Models

This section contains the sensors measurement models and and update equations

necessary for every sensors used in this project. Some sensors are grouped into a

single Subsection if they are similar in nature (such as the monocular camera and the

stereo camera pair). For many sensors, there are a variety of ways to formulate the

measurement. In this thesis, one approach was chosen for each measurement type in

order to be aligned with the ASPN program. The complete list of sensors discussed

in the following sections are listed in Table 3.1 along with the Section number that

they are discussed in.

3.11.1 Air Data Computer. The air data computer (ADC) provides mea-

surements of true air speed. True air speed will from now on be referred to as actual

air speed to avoid confusion with true versus estimated quantities. The measurement

model for the actual air speed is given as:

VADCmeas = VADCtrue +Bwind + wADC (3.31)

where VADC is the actual airspeed, Bwind is a TCB that accounts for wind speed, and

wADC is white Gaussian noise measurement error. To remove the effects of wind on

the actual airspeed, it is necessary to transform the airspeed into air velocity. For
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simplicity, the velocity is considered in only the horizontal dimensions which induces

minimal accuracy loss for steady flights.

The actual air velocity can then be expressed in terms of the aircraft and wind

velocities as:

vADC = vAC − bwind (3.32)

where vAC is the aircraft velocity in the north and east channel given by:

vAC =

 vN

vE

 (3.33)

and bwind is the two dimensional velocity of the wind modeled as two TCBs:

Bwind = ‖bwind‖ (3.34)

3.11.1.1 Measurement Update. The ADC measurement update is

a function of the aircraft velocity. The states are related to the actual air speed

measurement by taking the magnitude of (3.33). The measurement update equations

are then given as:

zADC = hADC + wADC (3.35)

zADC = VADCmeas (3.36)

hADC = ‖vAC − bwind‖ (3.37)

HADC =
∂hADC
∂x

∣∣∣∣
x=x̂

(3.38)

RADC = E[(wADC)(wADC)T ] (3.39)

3.11.2 Barometric Altimeter Sensors. The barometric altimeters used in

this research provide measurements of pressure altitude with respect to mean sea
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level (MSL) or a local reference datum. The measurement is modeled as:

hmeas = htrue + bbaro + wbaro (3.40)

Where h represents the altitude with respect to the reference datum, bbaro is a TCB

process representing the slow moving height error induced from atmospheric change,

height, distance from reference and other unmodeled errors, and vbaro represents the

white Gaussian noise measurement error.

Measurements from the barometer are quantized above the measurement noise

threshold with the quantization level lquant. This represents a uniform distribution

from −qbaro/2 to qbaro/2. This can then be approximated as Gaussian with a standard

deviation:

σ2
baro =

1

12
(qbaro)

2 (3.41)

Finally the influence of the barometer lever arm on the measurement can be extracted

by resolving the lever arm into the navigation frame and subtracting the resulting

height added from the measurement as:

Alt = Altmeas − lD (3.42)

where lD is the altitude element of the baro lever arm resolved in the geodetic frame

using Cg
nC

n
b l
b
baro.

The final measurement update is then given by:

zbaro = hbaro + wbaro (3.43)

zbaro = Altmeas (3.44)

hbaro = Alt+ lD + bbaro (3.45)

Hbaro =
[

0 0 1︸ ︷︷ ︸
pn

0 1︸︷︷︸
bbaro

0

]
1×N

(3.46)

R = E[(wbaro)(wbaro)
T ] (3.47)
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3.11.3 Camera Sensors. A basic digital optical imaging camera consists

of an aperture, lens, detector array and a sampling array. The imaging operation

involves focusing rays of light by the lens to project the scene image onto the detector

array. The detector array then converts the light energy to a voltage which is then

quantized to a digital value by the sampling array [31] resulting in a digital image.

This section discusses the single and stereo camera measurements, measurement

update, and feature initialization. Stereo cameras in this thesis are treated as single

camera units with the exception of a more accurate feature initialization, shared

feature states, and double measurements for features.

3.11.3.1 Measurement Equation. The images from each camera are

preprocessed using either Scale Invariant Feature Tracking (SIFT) [17] or Speeded

Up Robust Features (SURF) [3] to locate image features. Using a pin hole camera

model, the feature’s pixel position in the camera pixel frame is calculated in each

image that it is detected in and identified with a unique feature ID that remains that

remains constant in all subsequent frames. The pixel measurement is then related to

a calculated feature projection using a camera lens model and optical specifications.

The projection is described by the pointing vector sc in the camera frame shown in

Figure 3.2. The measurement presented by the camera is this vector normalized by

the feature depth in the camera frame expressed as:

sc =
1

scz
sc, sc =


scx

scy

scz

 (3.48)

The camera measurement is then modeled as:

scmeas =

 scxmeas

scymeas

 =

 scxtrue

scytrue

+ wcam (3.49)
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Figure 3.2: ASPN camera frame showing the projection vector, sc ,which extends
from the middle of the camera frame to the feature

Where scx and scy are the first two components of the homogenous pointing vector to

the feature location in the camera frame, and wcam is the white Gaussian noise mea-

surement uncertainty. The covariance of the measurement noise is estimated during

feature extraction. To relate the camera measurement to the estimated states, the

feature location must be determined. The methods used in this research to determine

feature location are described next.

3.11.3.2 Best Guess Feature Location Estimation. To determine the

location of each new feature to be tracked, a best guess estimate is made of magnitude

of the feature pointing vector in the camera frame which must then be resolved in the

geodetic navigation frame. This is expressed in terms of the modified measurement

as:

s̃c = Ds̄cmeas (3.50)

where D is the best guess magnitude of the pointing unit vector and s̄cmeas is the

normalized measurement homogenous vector given by:

s̄cmeas =
1√

1 + (scmeasx)
2 + (scmeasx)

2


scxmeas

scymeas

1

 (3.51)
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The magnitude of the projection vector can be based off environment, terrain, cam-

era, etc. For this thesis, the guess magnitude was dependent on the platform. The

projection vector must then transformed into the geodetic navigation frame. The

position of the feature in the NED frame is given as:

sn = Cn
b [lb + Cb

cs̃
c] (3.52)

where lb is the camera lever arm defined in the body frame. The feature geodetic loca-

tion is then given by the inverse relationship given in (2.14) where the initial location

is the current platform best position estimate. These are calculated sequentially as:

Altfeat = Alt− snz (3.53)

Lfeat =
snx

(Rp + Altfeat)
+ L (3.54)

λfeat =
sny

(Rm + Altfeat) cosLfeat
+ λ (3.55)

where Alt is the platform altitude, L is the platform latitude, λ is the platform

longitude, and snx, sny , and snz are the three components of the estimated projection

vector s̃c. For feature position estimation the filter must keep track of active features

for the entire time the camera takes measurements. The three components of the

feature’s position in the geodetic frame are estimated at each filter update cycle as

constant biases with a small amount of noise to allow the filter to continue making

feature position corrections.

The covariance of the projection vector is given by calculating the influence

matrix using:

W =
∂sn

∂y
(3.56)

where y is given by:

y =

 scmeas

D

 (3.57)
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The covariance is then computed using:

Ps̃cs̃c = W

 E[(wcam)(wcam)T ] 03×1

01×3 PDD

WT (3.58)

where PDD is the covariance of D and is set according to the platform and its envi-

ronment.

3.11.3.3 Stereo Camera Feature Location Estimation. Stereo vision

enables the feature distance from the camera setup to be estimated via stereopsis.

This allows a much more accurate initialization of the feature position with respect

to the platform body once features have been statistically matched between the two

camera frames. To determine the feature distance from the camera, the relationship

between the two camera measurements must be determined. From [31], the projection

from a single camera to the feature is given in terms of feature’s position in the NED

frame as:

sc = Cc
b(C

b
ns
n − lb1) (3.59)

Applying (3.59) to two cameras, the two projection vector equations for a single

feature are given as:

sc11 = Cc1
b (Cb

ns
n − lb1) (3.60)

sc22 = Cc2
b (Cb

ns
n − lb2) (3.61)

where Cc1
b is the DCM that rotates quantities from the body frame to camera one’s

frame, Cc2
b is the DCM that rotates quantities from the body frame to camera two’s

frame, lb1 is the lever arm of camera one expressed in the body frame, and lb2 is the

lever arm of camera two expressed in the body frame. Rearranging (3.61) to solve for

the feature NED position, sn, and substituting into (3.60), the following relationship

is obtained:

sc11 = Cc1
c2s

c2
2 + d, d = Cc1

b (lb2 − lb1) (3.62)
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approx feature location

sc1
sc2

z1

x1

y1

z2

x2

y2

Figure 3.3: Closest point of contact between infinite extensions of camera pointing
vectors. The closest the pointing vectors from camera one and camera two ever come
into contact with one another is given by the end points of the red dashed line

where d is the vector joining the origins of the two camera frames and Cc1
c2 is the

DCM that rotates quantities from the frame of camera two to the frame of camera

one. Choosing the frame of camera one to be the frame of reference, it is now desired

to find the location where each projection vector meets.

Considering the physical interpretation of the pointing vectors from each cam-

era, the magnitude for each vector is given by the scaling parameters that causes the

two to meet. However, given the errors in the measurement model, it is highly unlikely

that the lines will ever intersect in three dimensional space. Thus, the approximate

solution is given by considering the point of closest contact between the three di-

mensional vectors seen in Figure 3.3. To find this point, we express the measured

homogeneous pointing vectors in terms of their unit vectors s̄c11meas and s̄c12meas from

(3.51), and the scaling parameters D1 and D2. The projection vector from camera

one in camera one’s reference frame to the feature is given as:

s̃c11 = s̄c11measD1 (3.63)
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The projection vector from camera two expressed in the frame of camera one is taken

from (3.62), and given as:

s̃c12 = d + Cc1
c2s̄

c2
2measD2 (3.64)

The appropriate values for D1 and D2 are found by minimizing the gradient of the

distance between every point of the three dimensional line formed by varying the

scaling parameters of (3.63) and (3.64) [9]. The result is given in [28] as:

D1 =
be− cd
ac− b2

, and D2 =
ae− bd
ac− b2

(3.65)

where

a = s̄c11meas · s̄
c1
1meas (3.66)

b = s̄c11meas · (C
c1
c2s̄

c2
2meas) (3.67)

c = (Cc1
c2s̄

c2
2meas) · (C

c1
c2s̄

c2
2meas) (3.68)

d = s̄c11meas · d (3.69)

e = (Cc1
c2s̄

c2
2meas) · d (3.70)

The denominator of (3.65), will only equal zero when the lines are parallel giving a

feature location at infinity, and it will only be less than zero when the lines do not

converge in front of the camera. This situation will only occur as a noise induced

error and can be easily monitored. If either of these situations are detected then the

feature is discarded. The approximate feature projection vector is then calculated

using the mean of the projection feature from each camera:

s̃c =
1

2
(s̃c12 − s̃c11 ) + s̃c11 (3.71)

The resulting NED position is then found using (3.52) which is repeated here for

convenience:

sn = Cn
b [lb + Cb

cs̃
c] (3.72)
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3.11.3.4 Feature Location Covariance. The initial feature covariance

is based on the uncertainty in the current platform position coupled with the uncer-

tainty in the initial feature position guess with respect to the camera frame, sc. The

covariance can be estimated by forming the Jacobian with the partials of (3.52) with

respect to the position states and the components of the initial feature position in the

camera frame as:

W =
∂tn

∂y
(3.73)

where y and its associated covariance, Pyy, are given as:

y =

 x

s̃c

Pyy =

 Pxx 0

0 Ps̃cs̃c

 (3.74)

where x is the state vector of all the estimated states, Pxx is the navigation states

covariance matrix, s̃c is the estimated feature projection vector, Ps̃cs̃c is the estimated

feature projection vector covariance matrix, and tn is the feature position in the

geodetic frame given by (3.53) - (3.55).

The associated error mean and covariance value of the feature position is then

given by:

δtn = Wy (3.75)

E[(δtn)(δtn)T ] = WPyyWT (3.76)

The feature position is correlated with the platform states, and the cross-covariance

terms for every previously estimated state must be calculated. These terms are given

by:

Pδtnδx = E[(δtn)(x)T ] (3.77)
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Substituting (3.75) into (3.77), the cross-covariance terms are obtained by:

Pδtnx = E[(Wy)(x)T ]

= WE[(y)(x)T ] (3.78)

because we know that the last three elements of y are independent of x, (3.78) can

be rewritten as:

Pδtnδx = W′E[(x)(x)T ] (3.79)

where W′ is equal to W with the last 3 × 3 matrix element removed. The vertical

cross-covariance terms are then given by:

Pδtnx = W′Pxx (3.80)

and equivalently the horizontal cross-covariance terms are given by:

Pxδtn = PT
δtnx (3.81)

The cross-covariance terms and feature location covariance must then be carefully

placed into the proper locations in the state covariance matrix.

The covariance of the projection vector is given using (3.58) where PDD is the

covariance of D and can be calculated by either tracking the measurement covariance

through (3.63) - (3.71) or setting this to an artificially high value so that the filter

converges on an estimate provided by measurement updates.

3.11.3.5 Camera Measurement Update. For the monocular camera,

the measurement is then expressed in terms of the states using the projection model

as:

sc = Cc
b(C

b
ns
n − lb) (3.82)
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where sn is the feature position in the NED frame using the relationship to the geodetic

frame in (2.14) as:

sn =


(Rp + Altfeat)(Lfeat − L)

(Rm + Altfeat) cosL(λfeat − λ)

Alt− Altfeat

 (3.83)

Finally, (3.82) is normalized by the z component of the projection as in (3.48). The

final measurement update equations are found as:

zcam = hcam + wcam (3.84)

zcam =

 scxmeas

scymeas

 (3.85)

hcam =
1

scz
sc (3.86)

Hcam =
∂hcam
∂x

∣∣∣∣
x=x̂

(3.87)

Rcam = E[(wcam)(wcam)T ] (3.88)

The measurement update for the stereo camera pair follows the same method as with

single cameras but uses two measurements for a single feature instead of one. The

respective lever arms and camera orientations must be taken into consideration in

(3.82) when forming the respective measurement equations.

3.11.4 Compass Sensors. The earth’s magnetic field generally runs parallel

to the earth’s surface and points toward magnetic north. A compass exploits the ubiq-

uitous magnetic field to provide measurements of heading. Compass measurements

are affected by numerous entities including shock and vibration, stray magnetic fields,

and unlevel supporting surfaces [36]. These errors are modeled in this thesis as a single

TCB bias. The measurement equation for the compass is given as:

ψmeas = ψtrue + bψ + wψ (3.89)
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Where ψ is the heading angle, bψ is a TCB bias that accounts for the common compass

errors, and wψ is the white Gaussian noise measurement error.

3.11.4.1 Measurement Update. The heading angle is related to the

quaternion states via the four quadrant inverse tangent:

ψ = tan−1(c21/c11) (3.90)

Where c11 and c21 are the respective elements taken from the body to NED frame

DCM given in (3.15) with the corresponding quaternion elements seen in (2.15). The

compass lever arm has a negligible effect on the heading measurement. The measure-

ment update equation is then given as:

zcomp = hcomp + wψ (3.91)

zcomp = ψmeas (3.92)

hcomp = tan−1

(
2(q2q3 − q1q4)

q2
1 + q2

2 − q2
3 − q2

4

)
+ bψ (3.93)

Hcomp =
∂hcomp
∂x

∣∣∣∣
x=x̂

(3.94)

Rcomp = E[(wψ)(wψ)T ] (3.95)

3.11.5 Inclinometer. An inclinometer provides measurements of tilt of the

surface that it rests on. For a platform, this equates to providing information about

pitch and roll. Inclinometers provide very useful information about attitude and can

be used to aid in estimating compass errors [36]. Inclinometers performance generally

suffers from errors caused by its own motion [18]. These errors are accounted for in

this thesis using TCB biases in the pitch and roll measurements. The inclinometer

measurement model is given as: θmeas

φmeas

 =

 θtrue

φtrue

+ bincl + wincl (3.96)
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Where θ and φ are the pitch and roll angles, bincl is a TCB bias for each quantity

and wincl is the measurement white Gaussian noise error.

3.11.5.1 Measurement Update. These measurements are incorporated

into the filter by relating the pitch and roll measurements to the quaternion states

through (3.15) and (2.15). Like the compass, the lever arm is also negligible to this

measurement. The resulting measurement update equations then take the form:

zincl = hincl + wincl (3.97)

zincl =

 θmeas

φmeas

 (3.98)

hincl =

 sin−1(2(q2q4 − q1q3)

tan−1

(
2(q3q4 + q1q2)

q2
1 − q2

2 − q2
3 + q2

4

) + bincl (3.99)

Hincl =
∂hincl
∂x

∣∣∣∣
x=x̂

(3.100)

Rincl = E[(wincl)(wincl)
T ] (3.101)

3.11.6 Inertial Measurement Units. An inertial navigation unit (INS) or

equivalently an IMU, measures the specific force acting in the sensor frame. Generally

this will be coincident with the body frame or be a fixed orientation with respect to the

body frame. The measured specific force includes not only the body accelerations, but

also the gravitational force acting upon it. These the two forces can be differentiated

only by knowing the body current attitude and modeling the gravitational force.

There are two IMU measurement types – sampled specific force and angular rate

and integrated specific force and angular rate. The noise model and treatment of the

sensor in the Kalman filter is will differ depending on the measurement type. Error

terms are valid along all three axes of the IMU sensor frame and noise characteristics

are described using scalar math on only one axis for clarity.
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3.11.6.1 IMU Sampled Specific Force Measurement. The sampled

specific force measurement presented by an IMU in this thesis is modeled by:

fmeas = ftrue + ba + wa (3.102)

Where ftrue is the true specific force, ba is a TCB bias error, and wa represents the

process white Gaussian noise. The process noise autocorrelation along the x-axis and

derived noise power Qva is given by

E[wax(tj)wax(tk)] = Qwaδjk (3.103)

Qwa = σ2
wax

(3.104)

The TCB bias, ba, noise power is given by (2.35) using given IMU time constant

and bias variance. The physical relationship between the specific force process noise

and the IMU manufacturer parameters are related through the velocity random walk

term V RW . The associated measurement variance can then be calculated using the

relationship

σ2
wax

= (V RW )2/∆t (3.105)

where ∆t is the time interval between measurements.

3.11.6.2 Integrated Specific Force IMU Measurement. The integrated

specific force measurement equation differs slightly for the specific force measurement

equation and is modeled by:

∆vmeas = ∆vtrue + b∆v + w∆v (3.106)

Where vtrue is the true change in velocity over the past time period, b∆v is a TCB bias

error and w∆v represents the measurement white Gaussian noise error. The process
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noise autocorrelation along the x-axis and derived noise power Qw∆v
is given by:

E[w∆vx(tj)w∆vx(tk)] = Qw∆v
δjk (3.107)

Qw∆v
= σ2

w∆vx
(3.108)

The TCB bias noise power is given by (2.35) and calculated as:

Qbw∆v
= 2

σ2
bw∆v

∆t

Tbw∆v

(3.109)

The variance of the measurement is calculated using the V RW parameter:

σ2
w∆vx

= (V RW )2∆t (3.110)

3.11.6.3 IMU Sampled Angular Rate Gyro Measurement. The sampled

angular rate measurement presented by an IMU is modeled as:

ωbibmeas = ωbibtrue + bω + wω (3.111)

Where ωbibtrue is the true angular rate, bω is a TCB bias error and wω represents the

process white Gaussian noise. The process noise autocorrelation along the x-axis and

derived noise power Qvω is given by:

E[wωx(tj)wωx(tk)] = σ2
wωx

δjk (3.112)

Qwω = σ2
wωx

(3.113)

The TCB bias, bω, noise power is given by (2.35) using given IMU time constant

and bias variance. The angular rate measurement variance is given by the physical

accuracy parameter, angular random walk ARW through the relationship:

σ2
wωx

= (ARW )2/∆t (3.114)

66



where ∆t is the time interval between measurements.

3.11.6.4 IMU Integrated Angular Rate Gyro Measurement. The inte-

grated angular rate measurement equation is given by:

∆θmeas = ∆θtrue + b∆θ + w∆θ (3.115)

where θtrue is the true change in velocity over time period since the last measurement,

b∆θ is a TCB bias error and w∆θ represents the measurement white Gaussian noise

error. The process noise autocorrelation along the x-axis and derived noise power

Qv∆θ
is given by:

E[w∆θx(tj)w∆θx(tk)] = Qw∆θ
δjk (3.116)

Qw∆θ
= σ2

w∆θx
(3.117)

The TCB bias, b∆θ, noise power is given by (2.35) using given IMU time constant

and bias variance multiplied by the time since the last measurement which is:

Qb∆θ = 2
σ2
b∆θ

∆t

Tb∆θ
(3.118)

The variance of the measurement noise is calculated using the ARW parameter:

σ2
w∆θx

= (ARW )2∆t (3.119)

3.11.6.5 IMU Measurement Type Treatment. The two IMU mea-

surement types described in the previous sections require separate treatment when

incorporated into the filter. A rigorous incorporation would include treating accumu-

lated acceleration, and angular rate measurements as delayed-state quantities. This

treatment was undesirable for multiple reasons including complexity, time of imple-

mentation, and numerical accuracy issues. The first two reason are somewhat obvious,
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but the third reason deserves deeper discussion. The Kalman filter delayed-state equa-

tions are not available in literature in UD factorization form. Because IMU measure-

ments are available at a high frequency, they provide the majority of the filter update

and propagation times. Treating an accumulated acceleration/angular rate IMU as

a delayed-state sensor would require significantly more updates and propagations to

not be performed using the numerically stable UD equations.

In order to avoid a delayed-state representation, the accumulated accelera-

tion/angular rate IMU was then handled by converting the measurements into instan-

taneous acceleration and angular rate by dividing the measurements by the integration

interval. The measurement time was considered to the point midway in the integra-

tion. In practice, this would require a minimal filter delay since measurements would

be available at half a time epoch after they should have been incorporated. Because of

the high measurement frequency, this would not be a significant real time performance

degradation on a real system, but would have caused a significant complexity burden

on the filter code built for this project. Thus accumulated acceleration/angular rate

IMU measurements are preprocessed by moving measurements backward in time one

half epoch as the measurements are buffered from a binary data file.

3.11.6.6 Acceleration Measurement Update. For this project, both INS

types were treated essentially the same with the measurement equation (3.102). Ex-

pressing (3.102) with more descriptive annotation, the IMU acceleration measurement

is:

f bmeas = f btrue + ba + wa (3.120)

where f b is the specific force in the body frame and can be related to the body

acceleration and physical geographic quantities from [29] as:

f b = ab + Cb
n([2Ωn

ie + Ωn
en]vn − gn) (3.121)
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where Ωn
ie is the inertial to ECEF frame skew symmetric rotation rate expressed in

the NED frame calculated using (2.3) and (2.10) given in (3.122), and Ωn
en is the

ECEF to NED skew symmetric rotation rate expressed in the NED frame given in

(2.5).

Ωn
ie = Cn

eΩ
e
ieC

e
n (3.122)

The lever arm affects the measurement by introducing an additional acceleration

caused by angular rotations about the platform COG. This additional acceleration

is tangent to the estimated state acceleration ab, and is given by the double cross

product of the angular rate and the lever arm. Substituting (3.121) into (3.120) and

adding the lever arm effects, the total measured specific force is then given as:

f b = ab + Cb
n([2Ωn

ie + Ωn
en]vn − gn) + (Ωb

ib)
2lb (3.123)

where lb is the IMU lever arm in the body frame. The following accelerometer mea-

surement update equations are then presented to the filter:

zinsa = hinsa + wa (3.124)

zinsa = f bmeas (3.125)

hinsa = ab + Cb
n([2Ωn

ie + Ωn
en]vn − gn) + (Ωb

ib)
2lb + ba (3.126)

Hinsa =
∂hinsa
∂x

∣∣∣∣
x=x̂

(3.127)

Rinsa = E[(wa)(wa)
T ] (3.128)

3.11.6.7 Angular Rate Measurement Update. The measured angular

rate is not affected by the lever arm. The angular rate is between in the inertial and

body frame. The gyro measurement is related to the estimated states by the body

angular rate combined with the angular rate induced by motion over a curved surface

and the earth rotation rate [29] as:

ωbibmeas = ωbnb + Cb
n[ωnen + Cn

eω
e
ie] + bω + wω (3.129)
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The measurement update equations presented to the filter are given as:

zinsω = hinsω + wω (3.130)

zinsω = ωbibmeas (3.131)

hinsω = ωbnb + Cb
n[ωnen + Cn

eω
e
ie] + bω (3.132)

Hinsω =
[

0 I3︸︷︷︸
ωbnb

0 I3︸︷︷︸
bω

0

]
3×N

(3.133)

Rinsω = E[(wω)(wω)T ] (3.134)

3.11.7 GNSS Sensors. Global navigation satellite system (GNSS) sensors

is a generic term used in this thesis to encapsulate GPS position and/or velocity

measurements and GPS sensors that give pseudorange/delta-range measurements.

Position measurements are expressed using the WGS-84 geodetic latitude, longitude,

and altitude quantities. When available from measuring the doppler shift of the GPS

carrier frequency [35], the velocity measurements are given in the NED frame. GNSS

pseudorange/delta-range sensors pseudorange measurements are corrected for known

and modeled errors including tropospheric delay and satellite clock offset. Delta-range

measurements are corrected for known and modeled errors including the change in

clock offset and changes in the tropospheric delay.

3.11.7.1 GPS Position Measurement. The position measurement of

the GPS sensor is modeled by:
Lmeas

λmeas

hmeas

 =


Ltrue

λtrue

htrue

+ wGPSpos (3.135)
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where L is the geodetic latitude, λ is longitude, Alt is the altitude, and wGPSpos is

given by:

wGPSpos =


1
RE

0 0

0 1
RE cosL

0

0 0 1

νGPSpos (3.136)

where RE is the radius of the earth, and νGPSpos is the white Gaussian noise mea-

surement position error in meters. The velocity measurement model is given as:

vnmeas = vntrue + wGPSvel (3.137)

Where vnmeas is the velocity measurement in the NED reference frame and wGNSSvel

is the white Gaussian noise measurement error. The measurement noise power can

be estimated by the sensor as measurements are taken or be user defined. The GPS

lever arm gives a spatial displacement to the GPS position measurement as:

pnGPS =


L

λ

h

+


1
RE

0 0

0 1
RE cosL

0

0 0 1

Cg
nC

n
b l
b (3.138)

The lever arm only affects the velocity measurement during turns. The effect is

considered negligible in this research and not pursued further.
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The position and velocity measurements are related directly to the estimated

states with the resulting measurement update equations given as:

zGPS = hGPS +

 wGPSpos

wGPSvel

 (3.139)

zGPS =
[
Lmeas λmeas Altmeas (vnmeas)

T

]T
(3.140)

hGPS =
[

(pnGPS)T (vn)T
]T

(3.141)

HGPSpos =
[

I3︸︷︷︸
LλAlt

03 · · · 03

]
3×N

(3.142)

HGPSvel =
[

03 I3︸︷︷︸
vn

03 · · · 03

]
3×N

(3.143)

HGPS =

 HGPSpos

HGPSvel

 (3.144)

RGPS =

 E[(wGPSpos)(wGPSpos)
T ] 0

0 E[(wGPSvel)(wGPSvel)
T ]

 (3.145)

3.11.7.2 GNSS Pseudorange/Delta-range Sensors. The GNSS pseudorange/delta-

range sensors measurement is modeled as: rmeas

∆rmeas

 =

 rtrue

∆rtrue

+

 cδtr

cδt∆r

+

 wr

w∆r

 (3.146)

where cδtr is the clock error bias in the range measurement and cδt∆r is the change in

the clock error bias over the time interval that ∆r is valid. The GNSS pseudorange/delta-

range sensors pseudorange measurement equation is the familiar GPS range equation

and is related to the estimated states by:

r = ‖SV − pe‖+ cδtr (3.147)
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where SV is the satellite ECEF location and pe is given by:

pex = (Rp + h) cosLPRDR cosλPRDR (3.148)

pey = (Rp + h) cosLPRDR sinλPRDR (3.149)

pez = (Rp(1− e2) + hPRDR) sinLPRDR (3.150)

and where 
LPRDR

λPRDR

hPRDR

 =


L

λ

h

+


1
RE

0 0

0 1
RE cosL

0

0 0 1

Cg
nC

n
b l
b (3.151)

The delta-range measurement is obtained by the integrated doppler. It is a delayed-

state measurement and is given by the range change over a specified time interval

tk−1 to tk, which does not necessarily reference the same timing of the pseudorange

measurement. The measurement update is then expressed as:

∆r = rk − rk−1 + cδt∆r (3.152)

where δt∆r is the difference in clock error between tk−1 and tk, and the relationship to

the state is given by (3.147). Converting the ECEF position to the NED frame using

the inverse of the relationship found in (3.148), the measurement update equations

presented to the filter for a single pseudorange/delta range measurement take on the
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form:

zPRDR = hPRDR +

 wr

w∆r

 (3.153)

zPRDR =

 rmeas

∆rmeas

 (3.154)

hPRDR =

 ‖SV − pe‖+ cδtr

rk − rk−1 + cδt∆r

 (3.155)

HPRDR =
∂hPRDR
∂x

∣∣∣∣
x=x̂

(3.156)

RPRDR =

 E[(wr)(wr)
T ] 0

0 E[(w∆r)(w∆r)
T ]

 (3.157)

3.11.8 2D Laser Scanners. The laser scanners referred to in this project

are range finding LiDAR or LADAR systems. The range measurements are based

off of round trip time of the scanning laser signal. Given the round trip time of

pulses of light with the scan angle, a detailed map of the observed environment can

be generated.

Multiple methods exist for transforming the observed LiDAR data into posi-

tion guidance information. The method employed in this research for both the 2D

LiDAR systems involve processing the measurements into horizontal changes in posi-

tion and heading angle change. Using these measurements of relative position allow

the navigation system to bound the drift error of the onboard INS [2].

The 2D Laser scanners provide two dimensional scans of the environment around

them. The 2D laser scanner measurement reference frame follows an ENU body con-

vention as shown in Figure 3.4. For the scans, stationary environments are assumed.

The preprocessing of the scans involves converting the measurements from the scanner
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Figure 3.4: ASPN 2D Laser Frame

directly into position changes. This measurement equation is then expressed as:
∆xmeas

∆ymeas

∆ψmeas

 =


∆xtrue

∆ytrue

∆ψtrue

+ wL2 (3.158)

Where ∆x and ∆y are the x and y position change in the body frame, ∆ψ is the yaw

angle change, and wL2 is the measurement white Gaussian noise.

3.11.8.1 Measurement Update. The measurement update equation is

related to the states through the delayed-state Kalman filter equations. The position

measurement is a function of the estimated NED position states from the current and

past epoch where the last measurement was taken, and the quaternion states. The

direct relationship can be found directly from the geodetic position using (2.14) with

the previous position as the origin as:

∆ps = Cs
bC

b
n




(Rp + Altk)(Lk − Lk−1)

(Rm + Altk) cosLk(λk − λk−1)

Altk−1 − Altk

+ ∆Cn
b l
b

 (3.159)
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where ∆Cn
b represents the attitude change from the last 2D laser update DCM, and

lb is the 2D laser scanner lever arm in the body frame. The heading measurement

relates directly to the quaternion states from the heading relationship in (2.19) using

the quaternion compositions of the body to NED DCM elements as:

∆ψ = tan−1(c21k/c11k)− tan−1(c21k−1
/c11k−1

) (3.160)

where

c11k = q2
1k

+ q2
2k
− q2

3k
− q2

4k
(3.161)

c21k = q2kq3k − q1kq4k (3.162)

c11k−1
= q2

1k−1
+ q2

2k−1
− q2

3k−1
− q2

4k−1
(3.163)

c21k−1
= q2k−1

q3k−1
− q1k−1

q4k−1
(3.164)

The final measurement is composed of the first two elements of (3.159) and the heading

change measurement. These are then presented to the filter as:

zL2 = hL2 + wL2 (3.165)

zL2 =


∆xmeas

∆ymeas

∆ψmeas

 (3.166)

hL2 =


(Rp + Altk)(Lk − Lk−1)

(Rm + Altk) cosLk(λk − λk−1)

tan−1(c21k/c11k)− tan−1(c21k−1
/c11k−1

)

 (3.167)

HL2 =
∂hL2

∂xk

∣∣∣∣
x=x̂k,x̂k−1

(3.168)

JL2 =
∂hL2

∂xk−1

∣∣∣∣
x=x̂k,x̂k−1

(3.169)

RL2 = E[(wL2)(wL2)T ] (3.170)
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Figure 3.5: ASPN LiDAR Frame

3.11.9 3D Laser Scanners. 3D Laser scanners as used in this research

provide geometric point clouds of the environment around them. This is done using

pulses of light with a measured time of arrival at a known angle of the pulsed. In

navigation, 3D laser scanners measurements can be used to provide both positioning

and attitude information.

3.11.9.1 Preprocessed Measurements. For this research, 3D Laser

measurements are provided as planar surfaces and processed to include motion com-

pensation, planar surface feature extraction, and correspondence between subsequent

planar features.

The planar surface measurement is modeled as:

ζmeas =

 ntrue

dtrue

+ wL3 (3.171)

where ζ is the planar surface extracted from the point cloud, wL3 is the measurement

white Gaussian noise error, n is the plane normal with components:

n =
[
a b c

]T
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which together with d correspond to the parameters of the definition of a plane as:

ax+ by + cz + d = 0 (3.172)

The white Gaussian noise covariance is provided through the point cloud preprocessing

and represented by:

RL3 = E[(wL3)(wL3)T ] =


σ2
a σab σac σad

σba σ2
b σbc σb

σca σcb σ2
c σcd

σda σdc σdc σ2
d

 (3.173)

3.11.9.2 Position Measurement Update. The 3D laser scanner native

measurement equation provides the defining parameters of planar surfaces resolved in

the laser scanner frame. Positioning information is gleaned from the measurements

by calculating the shortest distance ρ from the laser scanner to the plane. This is

given by the projection of the plane normal onto any vector pointing from the plane

to the laser scanner given from [27] as:

ρ =
|d|
‖n‖

(3.174)

This can be simplified by removing the absolute value operator and changing the sign

on d to be negative, since the laser scanner is at the frame origin which will always

be opposite to the plane normal. The closest distance is then given by:

ρ =
−d
‖n‖

(3.175)

The closest distance is further simplified if we assume the plane normal is a unit vector

which is done from here on giving:

ρ = −d (3.176)
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and n will henceforth be written in the unit vector notation as n̄. The change in

the closest distance to the same plane seen in a subsequent scan gives the change in

position in the direction of the plane normal resolved in the previous laser scanner

frame. From [26], this is expressed as:

ρk−1 − ρk = ∆ps · n̄ik−1 (3.177)

where ∆ps is the position change in the laser scanner frame since the last laser scanner

measurement, n̄ is to the plane normal, and i and j are the previous and current

scanner reference frames respectively.

The position measurement equation is seen to be related directly to the position

states, by first performing a rotation from the laser scanner frame to the body frame

and then using the current best attitude estimate to rotate from the body to NED.

This is given as:

zL3pos = (Cs
bC

b
n∆pn) · n̄ik−1 (3.178)

where vL3pos is white Gaussian noise measurement error.

Similar to the position update, the change in the plane normals in the laser scan-

ner frame provides information about the attitude change. From [26] the relationship

between n̄ik−1 and n̄jk is given by the rotation:

n̄jk = Cj
i n̄

i
k−1 (3.179)

where Cj
i is the DCM representing the rotation between the two scan times and can

be expressed directly in terms of the quaternion states and the laser scanner to body

DCM. This is accomplished through several steps. First the attitude change must

be calculated since the last scan was taken. This is a function of the previous and

current quaternion attitude and is calculated from (2.23) as:

∆q = Q(qk)q
∗
k−1 (3.180)
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Populating (2.15) with the elements of ∆q, the attitude change DCM from j to i (Ci
j)

is formed.

3.11.9.3 Complete Measurement Update. The complete measurement

update is then built by vertically concatenating corresponding components of the

measurement update equations for both position and attitude. The measurement

noise covariance is calculated as:

zL3 = hL3 + wL3 (3.181)

zL3 =

 n̄meask

dmeask − dmeask−1

 (3.182)

hL3 =

 Cj
i n̄

i
k−1

(Cs
bC

b
n(pnk − pnk−1)) · n̄ik−1

 (3.183)

HL3 =
∂hL3

∂xk

∣∣∣∣
x=x̂k,x̂k−1

(3.184)

JL3 =
∂hL3

∂xk−1

∣∣∣∣
x=x̂k,x̂k−1

(3.185)

RL3 =


σadk

Rn σbk

σcdk

σdak σdck σdck σ2
dk

+ σ2
dk−1

 (3.186)

where

Rn =


σ2
ak

σabk σack

σbak σ2
bk

σbck

σcak σcbk σ2
ck

+ Cj
i


σ2
ak−1

σabk−1
σack−1

σbak−1
σ2
bk−1

σbck−1

σcak−1
σcbk−1

σ2
ck−1

Ci
j (3.187)

3.11.10 3-Axis Magnetometer. The 3-Axis magnetometer provides possible

position updates based on the earth’s magnetic field mapped to specific geodetic

locations. The mappings are generated from previous passes along the same route

80



referencing standalone GPS positioning data. On subsequent passes when GPS is not

available or degraded, the 3-Axis magnetometer provides high likelihood values of the

current position based off of past data.

3.11.10.1 Measurement Update. The measurement update is based

off the current estimated position compared to the high likelihood values provided by

the sensor. In this thesis, the measurement is given by selecting the maximum high

likelihood position update. The measurement is modeled as:
Lmeas

λmeas

Altmeas

 =


Ltrue

λtrue

Alttrue

+ wmagn (3.188)

where L is the geodetic latitude, λ is longitude, Alt is the altitude, and wmagn is given

by:

wmagn =


1
RE

0 0

0 1
RE cosL

0

0 0 1

νmagn (3.189)

where RE is the radius of the earth, and νmagn is the white Gaussian noise measure-

ment position error in meters. The magnetometer lever arm gives a spatial displace-

ment to the position measurement as:

pnmagn =


L

λ

Alt

+


1
RE

0 0

0 1
RE cosL

0

0 0 1

Cg
nC

n
b l
b (3.190)
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where lb is the sensor lever arm. The measurement update equation is the incorpora-

tion of (3.212) with respect to the estimated geographic states as:

zmagn = hmagn + wmagn (3.191)

zmagn =
[
Lmeas λmeas Altmeas

]T
(3.192)

hmagn = pnmagn (3.193)

Hmagn =
[

I3︸︷︷︸
LλAlt

03 · · · 03

]
3×N

(3.194)

Rmagn = E[(wmagn)(wmagn)T ] (3.195)

3.11.11 Odometry Sensors. Odometers provide measurements of relative

position change. This represents total distance traveled without regard to attitude or

direction of travel. In this project, the odometer measurement has no memory beyond

each time epoch and thus reports the distance traveled over the past time step. The

odometer measurment differs slightly from the traditional odometer in that it also

provides negative distances when the platform moves in reverse. As such, the native

measurement presented by the odometer is given as:

∆Dmeas = ∆Dtrue(1 + SF ) + wodom (3.196)

Where ∆D represents the change in total distance traveled, SF is a constant scale-

factor bias and wodom is the measurement white Gaussian noise error.

3.11.11.1 Measurement Update. The measurement is then related

to the states by taking the magnitude of change in the NED frame. This can be

computed directly from the change in latitude, longitude, and altitude states from

(2.14) using the previous and current position estimate. Including the effects of the

lever arm, which is the distance from the origin of the body frame to the odometer
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path contact surface, the change in position is given as:

∆rn =


(Rp + Altk)(Lk − Lk−1)

(Rm + Altk) cosLk(λk − λk−1)

Altk−1 − Altk

+ Cn
b (ψk − ψk−1)


0

lby

0

 (3.197)

where ψ is the heading angle and lby is the horizontal component of the lever arm in

the body frame. Following the delayed-state measurement update form as outlined

in Section 2.9.3, the final delayed-state stochastic measurement equations are then

expressed as:

zodom = hodom + wodom (3.198)

zodom = ∆Dmeas (3.199)

hodom = ‖∆rn‖(1 + SF ) (3.200)

Hodom =
∂hodom
∂xk

∣∣∣∣
x=x̂k,x̂k−1

(3.201)

Jodom =
∂hodom
∂xk−1

∣∣∣∣
x=x̂k,x̂k−1

(3.202)

Rodom = E[(wodom)(wodom)T ] (3.203)

3.11.12 Ranging Sensors. The ranging sensor measures the distance to a

beacon of known WGS-84 position. This provides a measurement similar to the GNSS

pseudorange measurement. The measurement is modeled as:

rmeas = rtrue + brange + wrange (3.204)

where r is the range to the beacon, brange is a TCB that models the sensor induced bias

over time, and wrange is the white Gaussian noise measurement hardware error. The

range to the beacon is then expressed in terms of the states and beacon coordinates
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by forming the distance vector in the NED frame as:

rn =


(Rp + Altb)(Lb − L)

(Rm + Altb) cosLb(λb − λ)

Alt − Altb

+ Cn
b l
b (3.205)

where Lb, λb, and Altb are the WGS-84 coordinates of the beacon and lb is the ranging

sensor lever arm. The range to the beacon is given in terms of the states as:

D = ‖rn‖ (3.206)

The filter measurement update equations are then presented as:

zrange = hrange + wrange (3.207)

zrange = rmeas (3.208)

hrange = ‖rn‖+ brange (3.209)

Hrange =
∂hrange
∂x

∣∣∣∣
x=x̂

(3.210)

Rrange = E[(wrange)(wrange)
T ] (3.211)

3.11.13 Radio Frequency Identification Sensors. RFID devices continue

to increase in popularity for a multitude of reasons. From replacing the familiar

barcodes on products to tracking pets, RFID devices are quickly working their way

into everyday life. Consisting of a silicon microchip and an antennae, RFID tags

are now found on the sub-millimeter level and enable identification from a distance

without requiring a line of sight [33]. Their small size and dramatically decreasing

cost make them an alluring option for a multitude of applications including tracking

and navigation.

Many types of RFID exist however, they are generally divided into two classes

of active or passive operation. Passive RFID tags operate only off the signal power
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Figure 3.6: From [33], three different RFID tags and their relative size with an
everyday object.

of an RFID tag reader. Possessing no power source allows the tag to be smaller

and cheaper, but has the disadvantage of very limited range. Active RFID tags

possess their own power source and are typically larger and more expensive than

passive models. However their signal range is significantly larger than their passive

counterparts. Though they can be matched with alternate equipment (e.g. memory

chip, GNSS receiver, etc.) the RFID tags considered in this project simply transmit

their identification code when queried. This provides a unique identifying code to

a reader. Tracking can be performed by knowing either the location of the reader

or RFID tag depending on which has motion and which is stationary. For tracking

purposes in an environment with many tags, a passive RFID tag is more effective for

pinpointing location. The opposite is true for environments with sparse tags.

For this project, stationary RFID tags are used with known WGS-84 coordi-

nates. A database is generated that contains the position, position uncertainty, and

operation type matched to each RFID tag ID. Both passive and active RFID tags are

used in this project.
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The RFID sensor measurement is given by the matching the tag ID with the

database location an modeled as:
Lmeas

λmeas

Altmeas

 =


Ltrue

λtrue

Alttrue

+ wRFID (3.212)

where L is the geodetic latitude, λ is longitude, Alt is the altitude, and wRFID is

given by:

wRFID =


1
RE

0 0

0 1
RE cosL

0

0 0 1

νRFID (3.213)

where RE is the radius of the earth, and νRFID is the white Gaussian noise measure-

ment position error in meters. The covariance of νRFID is a combination of the range

that the tag can be identified and the uncertainty in the tag geodetic location which

is known ahead of time. It is expressed as:

σ2
RFID = (

1

2
DRFID)2 + σ2

RFIDpn
(3.214)

where DRFID is the max range the tag can be identified, and σRFIDpn
is the tag

geodetic location standard deviation expressed in meters. The RFID device lever arm

is included in the measurement equation as:

pnRFID =


L

λ

Alt

+


1
RE

0 0

0 1
RE cosL

0

0 0 1

Cg
nC

n
b l
b (3.215)

where lb is the sensor lever arm. This acts to place the RFID reader at the location

of the RFID tag rather than the platform navigation system location. This is only

performed with passive tags where it is logical to assume that the RFID reader and

tag lie on the same side of the platform. Otherwise the lever arm is ignored. The
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measurement update equations presented to the filter are given as:

zRFID = hRFID + wRFID (3.216)

zRFID =
[
Lmeas λmeas Altmeas

]T
(3.217)

hRFID = pnRFID (3.218)

HRFID =
[

I3︸︷︷︸
pn

03 · · · 03

]
3×N

(3.219)

RRFID = E[(wRFID)(wRFID)T ] (3.220)

3.11.14 Signal of Opportunity Sensors. Signal of opportunity sensors are

simulated sensors that measure the time difference of arrival from two time synchro-

nized beacons. The measurement is the difference in signal propagation time from

the source to the mobile platform and the reference beacon. The native measurement

equation is modeled as:

TDOAmeas = TDOAtrue + bTDOA + wTDOA (3.221)

where TDOA is the time difference of delay, bTDOA is a TCB bias that represents

the combined clock error of the two signals, and wTDOA is white Gaussian noise

measurement error.

3.11.14.1 Measurement Update. From Figure 3.7, the distance from

the source to the mobile platform, Dmp, and the distance from the source to the

reference beacon, Dref , are both related through the time difference of delay by:

TDOA =
Dmp

c
− DRef

c
+ bTDOA (3.222)

where c is the speed of light and the signal propagation speed. The distance from the

source to the reference beacon DRef is known and its uncertainty is denoted by σ2
Ref .

Rearranging (3.222), such that the propagation time is associated with the TDOA,
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Ref

Figure 3.7: Signal of opportunity measurement setup.

and the distance from the source to the platform is related to the position states as:

Dmp = ‖rn‖, rn =


(Rp + Alt)(L − Lsource)

(Rm + Alt) cosL(λ − λsource)

Altsource − Alt

+ Cn
b l
b (3.223)

where lb is the sensor lever arm in the body frame. Though the sensor measurement is

in units of time, it is numerically beneficial to convert the measurement into meters.

This reduces burden on the filter since the signal propagates at the sped of light, and

using very small numbers with very large numbers can quickly lead to ill conditioning

in the filter. The complete set of measurement update equations are then given as:

zSOS = hSOS + wTDOA (3.224)

zSOS = c(TDOA) +DRef (3.225)

hSOS = Dmp + bTDOAm (3.226)

HSOS =
∂hSOS
∂x

∣∣∣∣
x=x̂

(3.227)

RSOS = c2E[(wTDOA)(wTDOA)T ] + σ2
ref (3.228)
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where σref is the standard deviation of the reference position in meters, bTDOAm is the

clock error bias now estimated in meters. The variance and process noise strength on

bTDOAm must be appropriately modified to account for the change of units.

3.11.15 Step Sensor. The step sensor provides information that can be used

to estimate relative position change. This represents total distance traveled without

regard to attitude or direction of travel. The step sensors indicates when a step has

taken place. As such, the measurement is modeled as:

∆Dmeas = ∆Dtrue + bstep + wstep (3.229)

Where ∆D represents the change in total distance traveled, bstep is a TCB, and wstep

is the measurement white Gaussian noise error. Since no tangible measurement is

actually presented, the measurement is set prior to filter execution to an average

human step size. The bias term in (3.229) then accounts for differences in individual

gait and walking speed which would also affect the distance between steps.

3.11.15.1 Measurement Update. The measurement is then related

to the states by taking the magnitude of change in the NED frame. This can be

computed directly from the change in latitude, longitude, and altitude states from

(2.14) using the previous and current position estimate as:

∆rn =


(Rp + Altk)(Lk − Lk−1)

(Rm + Altk) cosLk(λk − λk−1)

Altk−1 − Altk

 (3.230)

Following the delayed-state measurement update form as outlined in Section 2.9.3,

the final delayed-state stochastic measurement update equations are then expressed
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as:

zstep = hstep + wstep (3.231)

zstep = ∆Dmeas (3.232)

hstep = ‖∆rn‖+ bstep (3.233)

Hstep =
∂hstep
∂xk

∣∣∣∣
x=x̂k,x̂k−1

(3.234)

Jstep =
∂hstep
∂xk−1

∣∣∣∣
x=x̂k,x̂k−1

(3.235)

Rstep = E[(wstep)(wstep)
T ] (3.236)

3.11.16 Stop Sign Sensor. The stop sign sensor is realized by some optical

sensor mounted on the platform capable of detecting stop signs. For this project there

is no orientation for the sensor. The only information given by the sensor is that a

stop sign has been spotted. A database of all known stop sign geodetic latitudes and

longitudes along with the heading angle of the normal vector to the stop sign face is

must be generated.

3.11.16.1 Modeling. The stop sign sensor region of detection is por-

trayed in Figure 3.8. Once a sign is detected, the stop sign database is searched for

the top ten closest stop signs to the current estimated position. For a single stop

sign, the mean position update is determined in the center of the stop sign region of

detection. The distance from the stop sign given by:

d =
r2 − r1

2
+ r1 (3.237)

where r1 is the minimum distance that the sensor must be from the stop sign and r2

is the maximum distance that the sensor can be from the stop sign. The uncertainty
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Figure 3.8: Stop sign sensor region of detection.

of the stop sign sensor in the region of detection is given by:

Rd =

 σ2
d 0

0 σ2
ψSS

 , σd =
r2 − r1

2
and σψSS = θROD (3.238)

where θROD is the region of detection angle. The two dimensional vector (stop sign

altitude is unknown) extending from the stop sign to the update position is given by:

d = CSS

 d

0

 (3.239)

where LSS and λSS represent the geodetic location of the sign stop given in the

database, and CSS is given by:

CSS =

 cos θ sin θ

− sin θ cosθ

 , θ =
θROD

2
+ ψSS (3.240)

where ψSS is the stop sign heading angle. The update position for the vehicle in

the NED frame is then given by placing the sensor at the specified distance, d, and
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orientation, θ, from the sign and converting the position to the geodetic navigation

frame as:  Lmeas

λmeas

 =

 LSS

λSS

+

 1
RE

0

0 1
RE cosLSS

d + wSS (3.241)

where wSS is the white Gaussian noise process that characterizes the uncertainty

in the stop sign position and the measurement dependence on the current position.

The covariance of wSS is given as:

E[(wSS)(wSS)T ] = PxLλ + PSSLλ +

 1
R2
E

0

0 1
(RE cosL)2

W

 d

θ

WT (3.242)

where PxLλ is the filter provided covariance of the latitude and longitude states, PSSLλ

is the database provided covariance of the latitude and longitude of the stop sign, and

W is the influence matrix given by:

W =

 cos θ −d sin θ

− sin θ −d cos θ

 (3.243)

For consistency with other update equations in this thesis, the lever arm offset

is associated with the states in the measurement update equations. The first two

elements of the lever arm, body to NED frame DCM multiplication,Cn
b l
b , gives the

lever arm offset lNE. The final measurement update equations are then given as:

zSS = hSS + wSS (3.244)

zSS =
[
Lmeas λmeas

]T
(3.245)

hSS =
[
L λ

]T
+

 1
R2
E

0

0 1
(RE cosL)2

 lNE (3.246)

HSS =
[

I2︸︷︷︸
Lλ

0

]
2×N

(3.247)

RSS = E[(wSS)(wSS)T ] (3.248)
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To determine the stop sign that was observed, an array of pseudo measurements is

formed using each stop sign in consideration. A trial of incorporating each stop sign

position update into the filter is performed. The stop sign measurement update that

minimizes the measurement residual given in (2.57) and stays within 3σ of the residual

covariance is selected as the final filter measurement update. If no stop sign position

measurement update meets the 3σ criteria, then no stop sign sensor measurement is

used. The stop sign sensor measurement update and the position measurement update

are highly correlated. As a result the stop sign sensor is expected to sometimes provide

incorrect measurements causing significant errors in the navigation solution.

3.11.17 Terrain-Referenced Altimeter. The terrain-referenced altimeter

(TRA) measures the distance from the sensor to the ground plane. Its measurement

is modeled as:

Dmeas = Dtrue + bD + wD (3.249)

where D is the distance from the sensor to the ground plane, bD is a TCB bias due

to the sensor, and wD represents the white Gaussian noise measurement error.

3.11.17.1 Measurement Update. To relate the measurement to the

states, information regarding the terrain height is required. This is provided by a

digital terrain elevation data (DTED) map that provides a terrain height estimate

given a specific latitude and longitude. Associating the DTED map information

with the measurement rather than the estimate, the measurement equation is related

directly to the states as:

Dmeas + AltDTED = Alt+ bD + wTRA (3.250)

whereAltDTED is the terrain height above MSL, and wTRA is the combined uncertainty

in the measurement and the DTED terrain height given as:

wTRA = wD + wDTED (3.251)
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This measurement is obviously correlated with with latitude and longitude position

states. Because it is a measurement, this relationship cannot be shown directly in the

filter state covariance measurement using the traditional EKF, but it must at least

be accounted for in wDTED.

The height from DTED is not taken directly from the dataset, but estimated

by sampling the terrain height in the region of latitude and longitude uncertainty and

calculating a terrain height standard deviation and mean. This is accomplished using

the UT where sigma points are generated to reflect a mean latitude and longitude

with given uncertainty. DTED provides the transformation function and the mean

and covariance of the sigma points provide mean DTED height and uncertainty.

The final measurement update equations are then presented to the filter as:

zTRA = hTRA + wTRA (3.252)

zTRA = Dmeas + AltDTED (3.253)

hTRA = Alt+ bD (3.254)

HTRA =
[

0 0 1︸ ︷︷ ︸
LλAlt

0 . . . 0 1︸︷︷︸
bD

0 . . . 0

]
1×N

(3.255)

RTRA = E[(wTRA)(wTRA)T ] (3.256)

This measurement is highly correlated with the latitude and longitude positions states.

The relationship cannot be expressed using the traditional EKF measurement update

equations and can lead to suboptimal performance in the navigation solution.

3.12 Summary

Chapter III outlined the steps taken to develop the EKF filter used in this

research. A measurement incorporation, method was adopted to treat all sensor

provided information in the traditional Kalman filter, measurement update sense.

Basic navigational states where chosen to fit the needs of each of the three platforms
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and the adopted update method. A generic dynamics model to was developed that

could be tuned to meet the requirements of each platform. The dynamics model shows

the relationship between all the estimated states, and it was based upon a first-order

Gauss-Markov acceleration and angular rate model.

For each sensor, a measurement model was defined which described the mea-

surements and their contained error quantities. For some sensors, error states had

to be estimated to allow effective use of their measurements. Sensor specific states

were described as well as their incorporation into the state estimate vector and state

covariance matrix. The measurements were then related to the estimated states and

the associated EKF update equations were given for each sensor.

To accommodate the specific needs of each sensor, a flexible filter was developed

to adjust the state estimate vector and the state covariance matrix. The filter operates

in a manner that could be implemented in real time. Measurements are sensed in the

order that they were taken, and the filter propagates to the measurement time of

validity immediately prior to incorporating the measurement.

In the next chapter, scenarios that the filter was tested on are discussed and

results are presented. This includes simulation data generation, sensor characteristics,

sensor set descriptions, and navigation tracking performance under various sensor

configurations.
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IV. Results

T
he results and simulations developed in this thesis are discussed in this chapter.

This chapter is organized first by discussing the paths simulation software, sensor

measurement simulations, sensor characteristics, and the tracking scenarios. Sensors

are added in simulations to demonstrate their contribution to the navigation solution.

Navigation tracking results are provided in terms of the estimated state error and its

associated standard deviation (STD).

4.1 Simulations

Simulations where designed to test the utility of each additional sensor to the

sensor set. Each simulation was conducted in three dimensional space, although

several have one or more axes constrained. Some sensor measurements provide over-

powering state observability when compared other sensors. To demonstrate the per-

formance of the subtler sensor measurements, simple straight paths were created for

both the vehicle and the pedestrian.

4.1.1 Trajectory Simulation Software. All simulation platform trajectories

were computed using Profgen Tools. Profgen Tools consists of four computer pro-

grams for computing the position and attitude of platform given a list of motion

commands. The motion commands include movements, such as the forward and

backward accelerations, vertical and horizontal turns, roll maneuvers, jinking, and

free fall. The software is developed around a model for an aircraft, but has been used

for other platforms including public transit buses. Profgen is limited to single aircraft

at a time modeled as a point mass. This allows kinematic data to be created easily

while minimizing platform characteristics requirements such as mass, weight, thrust,

etc. [22].

The Profgen code provides all the truth data for basic navigation states dis-

cussed in Chapter III, as well as modeled and known quantities such as gravity and

earth sidereal rate. For most sensors, this information is sufficient for a complete
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simulation, however other sensors such as cameras and 3D laser scanners require ad-

ditional information to use the measurement models presented in Chapter III. Sensors

that required a modest amount of additional coding to simulate are described next.

4.1.2 RFID Tags. To simulate randomly placed RFID tags in each scenario,

an autonomous routine was built for the RFID sensors that takes the total distance

traveled in a scenario, divides the total distance by a predetermined segment length,

and randomly distributes a predetermined number of RFID tags. The distribution of

the tags placement is Gaussian with a predetermined standard deviation displacing

them from the traveled path. The standard deviation for the horizontal placement

is considerably great than the standard deviation for the vertical placement to avoid

tags being placed very far below or above the platform. Each RFID tag by default is

made passive with a few active RFID tags placed manually throughout each track.

Once created, the tags locations are saved so that the same set can be considered

in multiple sensor set configurations. Measurements are developed in the simulator by

moving the platform along the simulated path and calculating the distance from the

sensor to each tag at each time step. The step metric is controlled by a user defined

sample time. Measurements are registered when the range falls below the threshold

set by the passive or active tag range specification.

4.1.3 Camera Features. Placement of the camera features follows the same

procedure are with the RFID tags with the exception that very many features are

usually placed at much shorter segment lengths as seen in Figure 4.1. Once the

features have been placed, the platform is moved along the simulated path. At each

time step a range and angle from the camera is calculated as:

r = ‖sc‖ (4.1)

θ = cos−1(scz/r) (4.2)

where sc is the projection vector from the camera to the feature and scz is the z
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Figure 4.1: Example of random camera feature generation

component of the projection vector. Features that are within a predetermined min-

imum and max range as well as a representative field of view are then registered as

measurements. This makes the camera measurement more representative of physical

hardware while ensuring that measurements are never taken for features that are be-

hind the camera (i.e. where scz < 0). This would violate a fundamental assumption of

the camera projection model and cause problems as there is no way to tell from the

homogenous measurement vector that the feature was actually behind the camera.

The same process is performed with stereo cameras with the additional stipulation

of meeting the requirements of the range and field of view imposed by both cameras.

Once measurements are registered, error is simulated using white Gaussian noise as

shown in the camera measurement model.

4.1.4 Laser 3D Planes. Generation of planes that would be extracted from

3D point clouds in a real laser scanner follow the same random path procedure as

with the RFID tags and the camera features. There are more planes randomly placed

at each segment than RFID tags and less than camera features. At each segment of
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Figure 4.2: Top view of uncorrected 3D scanner plane normals at the positions in
the NED frame where the planes are defined.

the track, planes are created at a point where the line connecting the segment and

point becomes the plane normal vector. This point is chosen to represent the physical

location of the plane in space although the planes are modeled as infinite in size. This

is required to simulate the range limit of a real sensor where the plane is derived from

some flat surface that has a physical interpretation such as a wall. Even with real

data the planes are modeled as to have infinite size for this implementation. Points

are chosen about the segment so that plane normals are mostly horizontal to reflect

many real life urban scenarios. For this project, the plane normal is always defined

in the NED frame pointing away from the origin. That is, the side of the plane that

the origin lies is opposite to the side the plane normal points from. Because of this,

planes with normals that point towards the origin, as seen in Figure 4.2, must be

corrected. This is done by checking the distance to the plane form the origin using

(3.175). If the origin lies on the same side of the plane that the normal points, the

distance will be negative [34]. Performing a negative distance check, planes that fail

the test have their normals reversed and the fourth defining parameter of the plane
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Figure 4.3: Top view of the corrected 3D scanner plane normals at the positions in
the NED frame where the planes are defined.

is reevaluated. The complete correction is given by:

ζnew = −ζold (4.3)

where ζ represents the four parameters that define a plane described in Section 3.11.9

and the corrected plane normals are shown in Figure 4.3.

Once the set of planes has been created, the measurement simulator calculates

a range to the point that each plane was previously defined to originate from. This

is performed at each time step, which is again user defined. All planes that are in

range are registered as measurements, and measurement error is added using white

Gaussian noise.
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4.1.5 Sensor Set. To generate the scenarios, a large database of sensors

was compiled. The sensors that composed each scenario’s sensor sets, were selected

from the main database of sensors. The database contained all pertinent metadata for

each sensor. Separate configuration files for each scenario were written that included

information such as sensor orientation and the lever arm. The simulated scenarios

described in Sections 4.2.1 - 4.2.4 will reference the sensor names with associated

metadata described in this section. The complete list of sensors is given in Table 4.2

and Table 4.3 and a sensor naming convention legend is given in Table 4.1 for clarity.

Table 4.1: Sensor name legend.

Short Name Name Short Name Name
adc air data computer magn 3-axis magnetometer
baro barometric altimeter odom odometer
cam optical camera prdr pseudorange/delta range sensor
comp magnetic compass range ranging sensor
gps position and/or Velocity GPS rfid RFID device
incl optical camera sos signal of opportunity sensor
ins optical camera ssign stop sign sensor
laser2D optical camera step step sensor
laser3D optical camera tra terrain referenced altimeter

Table 4.2: Complete list of sensors used for all simulations with associated noise
parameters.

Name Wind STD (mi/hr)
adc1 30

Name Baro Bias STD (m) Baro Bias TC (s) Quantization
(m)

baro1 2E-3 10 1
baro2 2E-3 10 1

Name Meas STD (unitless) Type
cam1 1e-1 mono
cam2 1e-1 mono
cam3 1e-1 mono
cam4 1e-1 mono
cam5 1e-1 stereo

Name Comp Bias STD (deg) Comp Bias TC (s) Meas STD (deg)
comp1 1 10 1
comp2 1E-1 20 1E-1

101



Table 4.3: Complete list of sensors used for all simulations with associated noise
parameters.

Name North Meas STD
(m)

East Meas
STD (m)

Down
Meas STD
(m)

gps1 4 4 8

Name Incl Bias STD (deg) Incl Bias
TC (s)

Meas STD
(deg)

incl1 1 1 5E-1

Name Accel Bias STD
(m/s2)

Gyro
Bias STD
(rad/s)

Accel Bias
T (s)

Gyro Bias
T (s)

VRW
m
s√
s

ARW
rad
s√
s

ins1 1.96E-1 8.7E-3 3600 3600 4.3E-3 6.5E-4
ins2 1.96E-1 8.7E-3 3600 3600 4.3E-3 6.5E-4
ins3 1.96E-1 8.7E-3 3600 3600 4.3E-3 6.5E-4
ins4 9.8E-3 4.8481E-6 3600 3600 9.5E-3 8.73E-5
ins5 9.8E-3 4.8481E-6 3600 3600 9.5E-3 8.73E-5
ins6 2.45E-4 7.2722E-9 3600 3600 2.3833E-4 3.8178E-5

Name x Meas STD (m) y Meas
STD (m)

ψ Meas
STD (deg)

laser2D1 5E-2 5E-2 1

Name ζ Meas STD (m)
laser3D1 5E-2

Name North Meas STD
(m)

East Meas
STD (m)

Down
Meas STD
(m)

magn1 10 10 15

Name SF Bias STD Meas STD
odom1 1E-3 5E-2

Name Clk Err Bias STD
(s)

Clk Err
Bias TC
(s)

Meas STD
(m)

prdr1 1E-7 10 1

Name Clk Err Bias STD
(s)

Clk Err
Bias TC
(s)

Meas STD
(m)

range1 1E-8 10 1

Name N/A
rfid1

Name North Pos STD (m) East Pos
STD (m)

ssign1 3 3

Name Clk Err Bias STD
(s)

Clk Err
Bias TC
(s)

Meas STD
(s)

sos1 1E-8 10 1E-8

Name Bias STD Meas STD
tra1 1E-2 1
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Figure 4.4: Top view of the pedestrian building path. The starting point is indicated
by the circle and the stopping point by the ‘x’ mark.

4.2 Scenarios

Simulations were compiled for six separate scenarios. Two of the six scenarios

pertain to a pedestrian, three for a ground vehicle, and one scenario for an aircraft.

The first scenario for both the pedestrian and vehicle are short, straight paths de-

signed to show the performance of subtler sensors added systematically. Alternate

longer paths are generated for all three platforms to demonstrate sensor set navi-

gation performance over larger amounts of time and in higher dynamic maneuvers.

The aircraft is tested in only one very long scenario that includes launch, flight, and

landing.

For each scenario, vehicle error states are given in plots. Plots in which no

comparison is made with another sensor set are represented using dashed blue and

black lines, where the mean is given by the blue line and associated standard deviation

given by the darker black line. When comparisons are made on a single plot, the

prior test that is compared against is displayed using the same blue and black line

convention, and the current test is represented using lighter solid red and green lines
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Figure 4.5: Pedestrian straight path position error with only gps1 in operation.
The error is given be the blue line and filter calculated standard deviation by the red
lines.

for the mean and standard deviation respectively. For every plot the quantities are

completely described, however the current test almost always includes all the previous

test sensors plus one. Therefore, as a general rule of thumb, the lighter solid red and

green lines will represent the equal to or better navigation solution.

4.2.1 Pedestrian. Tracks for the pedestrian were constructed to exhibit slow

dynamics. The first path is straight and level where the platform quickly accelerates

to a max speed, travels at a constant velocity, and the comes to a stop. The second

pedestrian path is built to simulate a pedestrian traveling into, throughout, and then

exiting a building.

4.2.1.1 Straight Path. The pedestrian straight path contains no at-

titude or elevation changes. The dynamics involve accelerating to a max speed of

3.5m/s, maintaining constant speed and then coming to a stop. The duration of the

run is one minute and the distance traveled is 180m. The sensor set that was tested

in the pedestrian straight path is given in Table 4.4. We begin our analysis of the
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Figure 4.6: Pedestrian straight path position errors with only a MEMs grade IMU
and barometric altimeter in operation

Table 4.4: Complete table of sensors for the pedestrian straight path
Sensor Type Sensor Id Meas Rate (Hz) Sensor Type Sensor Id Meas Rate (Hz)
baro 1 4 ins 1 100
camera 1,5 4 incl 1 4
comp 1 4 prdr 1 1
gps 1 1 steps 1 N/A

pedestrian straight path using GPS only as a solution to compare other sensor sets

against. The GPS only solution is given in Figure 4.5.

Now considering an environment with limited GPS signal, a navigation solution

of the MEMs grade IMU with an aiding altitude provided by the barometric altimeter

is shown in Figure 4.6. Due to the very IMU high bias drift and measurement noise,

position errors in the north and east channels are very high. The effect of the altimeter

on the altitude channel is very pronounced, not only because the drift errors can now

be estimated and unknown errors in the normal gravity vector can be resolved.

We now consider bringing in an additional sensor. Often GPS positon solutions

are unavailable when less than the required minimum of four satellites are visible.

This can be the result of obstructing terrain, buildings, or other structures. Modeling

an underdetermined GPS setup, it is desired to check the navigation ability using
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Figure 4.7: Pedestrian straight path position errors with the MEMs IMU, baro-
metric altimeter, and two available pseudoranges in operation

less than for satellite pseudoranges. Using only two available pseudoranges with the

GNSS pseudorange sensor, the errors in the east and north channels are significantly

reduced as seen in Figure 4.7 compared to Figure 4.6. In fact, the error reduction is so

large that the comparison requires separate plots for all errors to be visible. The error

in the north channel has been reduced to a maximum of approximately 15m while

the error in the east channel has a max error on the order of 50m. The ability to use

the two pseudoranges is due largely in part to the barometer which locks down the

vertical channel and coupled with the IMU enables some estimation of the receiver

clock error.

Limiting the range of motion, the addition of the step sensor effectively locks

down the errors in the north and vertical channels. A comparison between the IMU,

barometric altimeter, and GNSS pseudorange sensor integration with the addition

of the step sensor is given in Figure 4.8. Modest improvements are obtained on the

north channel, while the improvement on the east channel is so large that it again is

difficult to view if compared on the same scale as the previous errors.
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Figure 4.8: Pedestrian straight path position errors with the MEMs IMU, baro-
metric altimeter, two available pseudoranges, and step sensor in operation compared
with the addition of the monocular camera. The first described test mean and STD
are displayed with the darker dashed blue and black lines, and the ensuing test mean
and STD are given with lighter solid red and green lines.

The results of adding a monocular camera are examined. In the first comparison

test on a single plot, the MEMs IMU, barometric altimeter, GNSS pseudorange sensor,

and step sensor integration is compared with the addition of a monocular camera in

Figure 4.8. The addition of the camera changes the position errors very little in the

north and east channels, but provides improvement to east channel decreasing the

error and bring it back to having a more zero mean characteristic, which was less

noticeable with the previous addition of the step sensor.

We now consider the pedestrian attitude error. Because resolving the specific

force due by gravity in the accelerometer measurements into the NED frame requires

knowledge of the attitude, a dynamic connection is created between the attitude and

platform positioning states. Because of this, each additional sensor that improved

the position solution also “improved” the pedestrian attitude estimate. The reverse

is also true as well, so the addition of attitude measuring sensors should improve

the vehicle position estimate. Other than the IMU, the camera is the first sensor to
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Figure 4.9: Pedestrian straight path attitude errors with the MEMs IMU, baro-
metric altimeter, two available pseudoranges, and step sensor position error solution
compared with the addition of a monocular camera. The first described test mean
and STD are displayed with the darker dashed blue and black lines, and the ensuing
test mean and STD are given with lighter solid red and green lines.

provide a measurement that is directly connected with the attitude. The pedestrian

attitude comparison of the previous sensor set with the addition of the camera is

given in Figure 4.9. In Figure 4.9, some of the improvement seen is a smoothing of

the attitude error in the heading angle, no change in the pitch angle, and the certainty

in the roll angle has be significantly lessened so that the STD now better characterizes

the estimate.

Next the errors in the position solution are once again reduced by adding a

compass and inclinometer. A comparison between the previous implementation with

the IMU, barometric altimeter, GNSS pseudoranges sensor, step sensor, and monoc-

ular camera with the addition of the inclinometer and compass is shown in Figure

4.10. The standard deviation of each attitude channel has now become very low and

somewhat close to exceeding 1σ STD line more than 42% of the time. Concerning the

position error with the addition of the inclinometer and the compass there appears to

be a smoothing of the altitude errors. As for the north and east channels, it is very
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Figure 4.10: Pedestrian straight path attitude errors with the MEMs IMU, baro-
metric altimeter, two available pseudoranges, a step sensor, and a monocular camera
compared with the addition of a compass and an inclinometer. The first described
test mean and STD are displayed with the darker dashed blue and black lines, and
the ensuing test mean and STD are given with lighter solid red and green lines.
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Figure 4.11: Pedestrian straight path position errors with the MEMs IMU, baro-
metric altimeter, two available pseudoranges, a step sensor, and a monocular camera
compared with the addition of a compass and an inclinometer. The first described
test mean and STD are displayed with the darker dashed blue and black lines, and
the ensuing test mean and STD are given with lighter solid red and green lines.

difficult to draw a conclusion whether the inclusion of the compass and inclinometer

reduced the errors. What does appear to be happen in Figure 4.11 is the transition

errors back to being zero mean white Gaussian. Overall this is then an improvement

as the errors should appear this way.

Finally the complete sensor set is compared to the GPS position solution origi-

nally computed. This is given in Figure 4.12. Examining these results, it is seen that

the combination of MEMs IMU, barometric altimeter, two available pseudoranges,

the step sensor, a monocular camera, a compass, and an inclinometer are comparable

to the GPS by itself in the north and east channels, and in the vertical channel is

significantly better thanks to the barometric altimeter. In the scenario that follows

this one, a longer more rigorous path is examined.
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Figure 4.12: Pedestrian straight path position errors with a single GPS compared
against the MEMs IMU, barometric altimeter, two available pseudoranges, an step
sensor, and a monocular camera compared with the addition of a compass and an
inclinometer sensor set. The first described test mean and STD are displayed with
the darker dashed blue and black lines, and the ensuing test mean and STD are given
with lighter solid red and green lines.
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Figure 4.13: Pedestrian building path position errors with a single MEMs IMU,
barometric altimeter, and two available pseudoranges compared with the addition of
the step sensor. The first described test mean and STD are displayed with the darker
dashed blue and black lines, and the ensuing test mean and STD are given with lighter
solid red and green lines.

4.2.2 Building Path. While the straight path proved to be a useful diagnostic

test for positioning sensors, it does not provide very valuable insight into the quality

of the attitude estimation or position solution over long periods of time. Thus the

pedestrian building path was designed to be the next test for the sensor integration.

The pedestrian building path has a duration of over four minutes, covers a distance of

over 850m, and consists of many 90 degree turns and speed fluctuations. A top view

of the pedestrian building path is given in Figure 4.4. The complete set of sensors

used for this path are referenced in Table 4.5. Now considering the sensor set for

this scenario, a single MEMs grade IMU, barometric altimeter, and two pseudorange

measurements are employed for the first non-GPS positioning test. Integrating the

measurements from the three sensors together, considerably good position tracking is

obtained. Continuing the sensor addition process, an additional MEMs IMU is added

to the sensor set. The comparison for the single MEMs IMU and the double MEMs
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Figure 4.14: Pedestrian building path position errors with a single MEMs IMU,
barometric altimeter, and two available pseudoranges compared with the inclusion of
an additional MEMs IMU. The first described test mean and STD are displayed with
the darker dashed blue and black lines, and the ensuing test mean and STD are given
with lighter solid red and green lines.

Table 4.5: Table of sensors for the pedestrian building path.
Sensor Type Sensor Id Meas Rate (Hz) Sensor Type Sensor Id Meas Rate (Hz)
baro 1 1 ins 1,2,3,4 100
camera 1,2,5 4 magn 1 0.1
comp 1 0.25 prdr 1 1
gps 1 4 step 1 N/A
incl 1 4
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Figure 4.15: Pedestrian building path attitude errors with a single MEMs IMU,
barometric altimeter, and two available pseudoranges compared with the addition of
a second MEMs IMU, an inclinometer, and a compass. The first described test mean
and STD are displayed with the darker dashed blue and black lines, and the ensuing
test mean and STD are given with lighter solid red and green lines.

IMU implementation position error is given in Figure 4.14. Significant position error

reduction is seen on the north and east channels, although some significant errors

are observed on the east channel that are starting to dangerously exceed the state

estimate STD.

Examining the attitude errors from the, seen in Figure 4.15, significant im-

provements are made on the roll and pitch states estimates due to the additional

observability gained by the positioning sensors. The heading appears to have im-

proved, however, estimates still suffers from large errors due to the fact that the only

observability is provided by the IMUs. Similar results are noted with the addition

of a third MEMs IMU with very little improvement to the position states seen Fig-

ure 4.16. The attitude remains mostly the same, with the exception of the a very

large improvement seen on the heading estimate seen in Figure 4.17. Continuing

the sensor integration, the step sensor, compass and inclinometer are added to the

sensor array. Because the step sensor acts to constrain the range of motion, and the
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Figure 4.16: Pedestrian building path position errors with a single MEMs IMU,
barometric altimeter, and two available pseudoranges compared with the addition of
a MEMs IMU and an inclinometer sensor set. The first described test mean and STD
are displayed with the darker dashed blue and black lines, and the ensuing test mean
and STD are given with lighter solid red and green lines.
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Figure 4.17: Pedestrian building path position errors with two MEMs IMUs, baro-
metric altimeter, and two available pseudoranges compared with the addition of a
third MEMs IMU, an inclinometer, and a compass. The first described test mean and
STD are displayed with the darker dashed blue and black lines, and the ensuing test
mean and STD are given with lighter solid red and green lines.
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Figure 4.18: Pedestrian building path position errors with three MEMs IMUs,
barometric altimeter, two available pseudoranges, step sensor, an inclinometer, and a
compass. The first described test mean and STD are displayed with the darker dashed
blue and black lines, and the ensuing test mean and STD are given with lighter solid
red and green lines.

inclinometer and compass provide absolute roll, pitch, and heading estimates, the

position solution is substantially improved and the position errors for the entire run

are reduced to a max STD of 20m in the north channel, 10m in the east channel, and

only 2m in the vertical directions as seen in Figure 4.18. The final sensor addition

for the pedestrian path involves the addition of the 3-axis magnetometer. The 3-axis

magnetometer provides full three dimensional position information every 10s. Incor-

porating the 3− axis magnetometer into the filter gives results that are on the same

level of accuracy as the GPS for the entire run as seen in the comparison in Figure

4.19.
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Figure 4.19: Pedestrian building path position errors with triple MEMs IMUs,
barometric altimeter, two available pseudoranges, step sensor, an inclinometer, and a
compass compared with the standalone GPS. The first described test mean and STD
are displayed with the darker dashed blue and black lines, and the ensuing test mean
and STD are given with lighter solid red and green lines.
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Figure 4.20: Top view of the vehicle city path. The starting point is indicated by
the circle and the stopping point by the ‘x’ mark.

Table 4.6: Table of sensors for the vehicle straight path.
Sensor Type Sensor Id Meas Rate (Hz) Sensor Type Sensor Id Meas Rate (Hz)
baro 1 1 ins 1,4 100
camera 1,2,5 4 laser2D 1 10
comp 1 2 prdr 1 1
gps 1 4 range 1 N/A
incl 1 4 odom 1 10

4.2.3 Vehicle.

4.2.3.1 Straight Path. The vehicle straight path is designed to test

low observability sensors that are not used on the pedestrian. This includes the signal

of opportunity sensor, ranging sensor, and the vehicle odometer. The path consists

of a quick acceleration to 35mph, traveling at a constant rate, and then slowing to

a stop within one minute. During then run, the vehicle attitude and elevation are

kept constant. The complete list of sensors used at some point in this path are given

in Table 4.6. The duration of the vehicle straight path run is one minute and covers

a distance of 780m. In the first sensor setup, the vehicle position is tracked using

the MEMs grade IMU, the barometric altimeter, the odometer, a compass, and two

pseudoranges. Results obtained are very similar to those seen in the similar case
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Figure 4.21: Vehicle straight path position errors with the MEMs IMU, barometric
altimeter, two available pseudoranges, the odometer, and a compass compared with
the addition of the ranging and the signal of opportunity sensors. The first described
test mean and STD are displayed with the darker dashed blue and black lines, and
the ensuing test mean and STD are given with lighter solid red and green lines.

with the step sensor and the pedestrian. Next the ranging and signal of opportunity

sensors is added to the sensor array and the comparison is shown in Figure 4.21. The

addition of the ranging and signal of opportunity sensors, provides the additional

north and east information. In both the north and east channels, the position errors

have become more white zero mean Gaussian and are much better characterized by

their STD.

The final addition to the vehicle straight path is the 2D laser scanner. Due

to numerical issues encountered when using the 2D laser scanner together with the

odometer, the 2D laser scanner will replace the odometer for the next sensor set.

These errors were due to the implementation of both sensors using the delayed-state

equations, but this conflicting relationship was not observed between all delayed-

state sensors. Adding in the 2D laser scanner, provided further improvements to the

position even with the removal of the odometer. The most pronounced improvement
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Figure 4.22: Vehicle straight path position errors with the MEMs IMU, barometric
altimeter, two available pseudoranges, the odometer, and a compass compared with
the same sensor setup but the odometer replaced by the 2D laser scanner. The first
described test mean and STD are displayed with the darker dashed blue and black
lines, and the ensuing test mean and STD are given with lighter solid red and green
lines.

is seen on on the east position channel where the STD is reduced and characterizes

the mean very well as seen in Figure 4.22.
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Figure 4.23: Vehicle urban path position errors with the MEMs IMU and barometric
altimeter.

Table 4.7: Table of sensors for the vehicle urban path.
Sensor Type Sensor Id Meas Rate (Hz) Sensor Type Sensor Id Meas Rate (Hz)
baro 2 1 magn 1 0.05
camera 1,2,3,4,5 4 odom 1 10
comp 1 4 prdr 1 1
gps 1 1 range 1 1
incl 1 4 rfid 1 N/A
ins 4 100 sos 1 1
laser2D 1 10 ssign 1 N/A
laser3D 1 10

4.2.3.2 Urban Path. The urban path tests the multi sensor configu-

rations in scenarios with many turns, relatively low dynamics, and provides an area

for testing the stop sign sensor. The top view of the city path is given in Figure

4.20. Multiple 90 degree turns at a slow speeds of 15mph and less are taken through

roadways similar to that seen in an urban neighborhood. During the longest stretch

of the run, the vehicle accelerates to a top speed of 45mph, while traveling down

an incline. After this segment, the vehicle finishes the track driving 35mph until it

reaches the neighborhood area again. There the vehicle slows to speeds of 15mph or

less and eventually comes to a stop at approximately the same location as starting

point. The vehicle city path has a duration over 240s and covers a distance of 1.5mi.
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Since this is the first time the tactical grade INS has been used, the complete

path is first calculated using only the INS with an aiding altitude. As expected,

the position errors start out small but soon grow very quickly, especially given the

large number of turns in the urban path, which amplify errors in the position due

to attitude errors unlike the case in the straight path. The INS and aiding altitude

position errors are shown in Figure 4.23.

The vehicle path is then examined using the tactical IMU, two psuedoranges,

3-axis magnetometer, the 3D laser scanner, the odometer, two pseudoranges, and

available RFID tags and compared to the standalone GPS solution. The resulting

position errors are given in Figure 4.24. The majority of the position error reduction

over the INS altimeter sensors integration is due largely in part to the 3D laser scanner.

Some of the most severe errors seen in Figure 4.24 are due to the low observability of

the 3D laser scanner with height, since the majority of identifiable planes in an urban

environment have normals that are parallel to the ground, and few have normals

orthogonal to the ground.
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Figure 4.24: Vehicle urban path position errors with the tactical IMU, two psuedo-
ranges, 3-axis magnetometer, the 3D laser scanner, the odometer, two pseudoranges,
and available RFID tags compared to standalone GPS. The first described test mean
and STD are displayed with the darker dashed blue and black lines, and the ensuing
test mean and STD are given with lighter solid red and green lines.
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Figure 4.25: Top view of the vehicle interstate path. The starting point is indicated
by the circle and the stopping point by the ‘x’ mark.

4.2.3.3 Interstate Path. The Interstate vehicle path allows analysis of

the vehicle accelerating quickly onto an Interstate, traveling at high speed, changing

elevation, making a wide sweeping turn that induces a roll angle, and then slowing to

a stop. The scenario duration is approximately 4 minutes long and the path traversed

covers over 5mi. The top speed in this simulation is approximately 65mph. The

list of sensors selected from for this path are given in Table 4.8. The navigation in

Table 4.8: Table of sensors for the vehicle Interstate path.
Sensor Type Sensor Id Meas Rate (Hz) Sensor Type Sensor Id Meas Rate (Hz)
baro 2 1 ins 1,4 100
camera 1,2,5 4 magn 1 0.05
comp 1 4 odom 1 10
gps 1 1 prdr 1 1
incl 1 4

the vehicle Interstate path is tested using the barometric altimeter, tactical grade

INS, a compass, an inclinometer, two pseudoranges, the odometer, and the 3-axis

magnetometer. The resulting position errors are then compared against the GPS

only solution in Figure 4.26. Just with the inclusion this sensor set, nearly the same

results are obtained in the north position channel. In the east channel where the
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Figure 4.26: Vehicle Interstate path position errors with the barometric altimeter,
tactical grade INS, a compass, an inclinometer, two pseudoranges, the odometer, and
the 3-axis magnetometer compared with standalone GPS. The first described test
mean and STD are displayed with the darker dashed blue and black lines, and the
ensuing test mean and STD are given with lighter solid red and green lines.

majority of the motion takes place, less accuracy is noted with large non-GPS sensor

set than with the standalone GPS. In the horizontal channel, greater accuracy is noted

with the non-GPS sensor set even with the less accurate barometric altimeter chosen

to represent errors due to velocity, and distance from pressure reference.
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Figure 4.27: Top view of the San Gabriel aircraft path. The starting point is
indicated by the circle and the stopping point by the ‘x’ mark.

Table 4.9: Table of sensors for the San Gabriel aircraft path.
Sensor Type Sensor Id Meas Rate (Hz) Sensor Type Sensor Id Meas Rate (Hz)
adc 1 2 ins 6 100
baro 1 1 prdr 1 1
camera 1,2 4 range 1 1
comp 1 4 sos 1 1
gps 1 1 tra 1 1
incl 1 4

4.2.4 Aircraft San Gabriel Flight. The aircraft simulation is a shortened

version of a Profgen provided example of an aircraft trajectory over the California San

Gabriel Mountains. The San Gabriel path includes launch, stable flight, and landing.

The simulation duration is approximately 15 minutes, and the aircraft traverses over

71mi in it. The complete list of sensors selected from in this path are given in Table

4.9.

The navigation with the aircraft is first performed using only the navigation

grade INS and the barometric altimeter. For the aircraft case, an altimeter with a

higher altitude bias drift rate is considered to account for worse calibration errors
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Figure 4.28: San Gabriel aircraft path position errors with the navigation grade
INS and barometric altimeter.

and the increased distance from the pressure reference location. The navigation using

only the INS and the altimeter maintains the aircraft’s position for a good portion

of the flight, however, without any over updates, the uncertainty and position errors

in the north and east channels continue to grow as seen in Figure 4.28. The aircraft

altitude tracking errors are bounded by the altimeter.

Next the ADC is added to the navigation sensor set. Due to the high accuracy of

the navigation grade INS, the ADC has very little noticeable effect on the navigation

solution when viewed only with the INS and barometer. The effect of the air data

computer is best seen using the GPS that provides widely spaced measurements and

a compass. In Figure 4.29, 0.1Hz GPS and compass position errors are compared

against the added ADC for the first five minutes of the flight. The ADC significantly

lowers the STD in the north and east channels which still completely characterize

the error. As a final run, the position of the aircraft is tracked using the INS, ADC,

barometric altimeter, two available pseudoranges, and the TRA. As shown in Figure

4.30, very good position accuracy is obtained using this setup. The position errors
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Figure 4.29: San Gabriel aircraft path position errors with the GPS and a compass
compared with the addition of the ADC. The first described test mean and STD are
displayed with the darker dashed blue and black lines, and the ensuing test mean and
STD are given with lighter solid red and green lines.
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Figure 4.30: San Gabriel aircraft path position errors with the INS, ADC, baro-
metric altimeter, two available pseudoranges, and the TRA.

in the north channel reach a maximum value of 20m and the position errors in the

east channel have a maximum error of 70m. The altitude maintains a very accurate

estimate using the barometric altimeter with the TRA. All three position states are

well characterized by their mean. Though the position tracking with the INS, ADC,

barometric altimeter, two available pseudoranges, and the TRA was very good, the

errors are still too large to compare directly with the standalone GPS on the same

plots.

4.3 Summary

In order to produce the results in this thesis, trajectory paths had to be created

for each of the three platforms. Six paths were created to test the varied sensor set

under multiple dynamics and platform maneuvers. The software used to create the

trajectory paths was Profgen Tools. In addition to navigation states, measurements

had to be simulated for every sensor. Many sensors provide measurements that require

more than just sampled states to represent, such as features and planar surfaces.
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This measurements were simulated using custom code. Finally the sensor sets were

defined, and the EKF filter was run for each of the simulated paths using multiple

sensor configurations and the results generated were presented.

The results presented in this chapter show that for at least short paths, position

tracking with accuracy levels similar to GPS are possible in a GPS-limited environ-

ment. Often a staple in the estimating the navigation solution was the inclusion of

the pseudorange sensor. Though the GPS solution was by far underdetermined, the

pseudoranges provided absolute positioning that was affected only by one error state

because of the common receiver. Because other range sensors such as the signal of

opportunity sensor or ranging sensor have separate clock errors, their benefit is much

more limited than pseudoranges. Another suprisingly useful sensor was the step sensor

and odometer. Matched with an IMU, pseudoranges, and the barometric altimeter, a

very functional navigation system was developed that maintained position accuracy

for relatively long periods of time.
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V. Conclusion and Summary

T
he results and final conclusions are drawn in this chapter of this thesis. This

includes discussion of the advantages of the implementations taken, what worked

well, what did not work well, and the lessons that were learned.

5.1 Implementation Discussion

Many design choices were made early on in this research, such as the desired

filter for sensors integration and sensor measurement models. The rationale behind

these design decisions is discussed in this section giving the potential advantages and

disadvantages. Lastly these decisions are evaluated now that the project is complete.

5.1.1 EKF Implementation. The main advantage of using the EKF in this

thesis was the mass of readily available information concerning its implementation,

examples of use, and known pitfalls. The EKF is ubiquitous in navigation research.

This often makes its implementation desirable even though more accurate methods

are available. In addition, use of the EKF was an ASPN program constraint.

Unfortunately, there are many disadvantages of using the EKF as well. Imple-

mentation of the 19 sensors discussed in this thesis was anything but trivial using an

EKF. Building the Jacobian matrix for many measurement updates equations became

a long tedious process. Blindly forming the Jacobian matrices of measurement update

equations with respect to all states that appeared in the expression, as illustrated by

EKF theory, often led to problems. This was due to non-observability in the measure-

ment with respect to all states appearing in the update equation. Deviations from

the normal formation of the Jacobian matrices were required to prevent filter diver-

gence. This required considering the type of measurement, and whether or not any

real observability was available of the state appearing in the measurement equation

and how critical that quantity was to relating the measurement to other states.

The EKF implemented in traditional form also encountered problems from sen-

sors that provide measurements that are correlated with estimated states such as the
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terrain based altimeter or stop sign sensors. In fact, inclusion of the stop sign sensor

in this project was partially performed to test and even cause the EKF solution to

diverge. Incorporating these devices demonstrate the requirement for more intensive

nonlinear filtering implementations as discussed in [13].

5.1.2 Sensors and Sensor Models. Many of the sensors used in this research

provided a small but substantial impact on the navigation solution, at least given the

very simple platform dynamics models described in Chapter III. Inclusion of ranging

measurements such as GNSS pseudoranges, time difference of arrival, and beacon

ranging helped to slow INS drift and lower position covariance. The stop sign sensor

provided little useful information as implemented, and often brought more problems

to the EKF than it solved due to its dependance on the current position and high

likelihood of being matched to an incorrect stop sign. Distance measurements given

by the step sensors for the pedestrian, and the odometer for the vehicle provided only

a small amount of information by themselves, but matched with and underdetermined

GPS scenario and an altimeter provided excellent aiding to a MEMs IMU.

The dominating sensors of the group provided substantial results. The com-

passes and inclinometers provided excellent aiding for attitude estimation and to-

gether almost completely encompass the very limited methods for bounding IMU at-

titude drift cheaply and effectively. Barometric altimeters provided essential support

for the IMU by removing uncertainty in the normal gravity vector, and alignment.

In the case of the aircraft only, the air data computer actual air speed mea-

surement provided a very useful method of navigation once the wind velocity vector

was determined. Wind velocity determination requires some alternate measurement

source such as GPS provided position of radar based measurements coupled with

turning maneuvers described in [7]. Once an initial estimate of the wind velocity was

determined, the air speed measurement coupled with the IMU provides an excellent

combination. The TRA combined with a DTED map file provides an excellent source

of altitude updates. Because this measurement is very dependent on the position
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states, it can be a source for problems with the filter. This error is mostly accounted

for by sampling the terrain heights over the entire position uncertainty region and

calculating a mean and covariance of the region for the update. The validity of this

method assumes correct modeling of the positions states plus it is very dependent on

the assumption that the terrain height may be accurately modeled as Gaussian.

Camera sensors provide an excellent source for the ground platforms for bound-

ing IMU drift errors, but in practice require a great deal of support. The camera

projection model is anything but plug and play and requires relatively good position,

attitude, and a well tuned model. Key to the successful camera implementation is

an abundance of features available at the beginning of navigation where the initial

position is known (even if only relatively so). The beginning of navigation is a broad

term in this context, but ultimately is dependent on the quality of the IMU being used

with the camera. When used together, the camera aids navigation by bounding the

IMU drift errors. Over time, as position errors add up, the camera loses its ability to

accurately locate new features and quickly can cause problems with the EKF, unless

some form of absolute positioning becomes available.

The 2D laser scanners provided another excellent source of binding IMU errors

and with the addition of the barometric altimeter, compass, and inclinometer can

provide a complete navigational system for the low dynamics case, as long as there

are an adequate number of objects for the scanner to base measurements from. The

3D laser scanner can provide complete platform navigation observability in urban

environments combined with only an IMU. As implemented in this thesis, the 3D

scanner could operate by itself to some degree, but this is unrealistic since an IMU is

required in real data to correct for motion error and plane matching when relatively

low dynamics specifications are exceeded [26]. Ultimately though, the 3D scanner

provided one of best implementations of all the sensors, but as used in this project is

dependent on urban environment structures.
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5.2 Future Research

Due to the size of this project, there are many areas for improvement in future.

The areas discussed in this section are simulation improvement, more detailed sensor

models, and sensor fusion for a new sensor.

5.2.1 Realistic Simulations. Many of the sensors discussed in this thesis

operate well under certain conditions, however scenarios can be devised that severely

affect sensor operation. For example a compass works very well when placed upon

a flat surface, but the heading measurement quickly degrades with tilt. Improved

simulations of sensors would link the tilt of the platform to the amount of error seen

in the compass measurement. Likewise, the main source of error with inclinometers

is its changing motion. Measurement error in simulation would represent real data

much more closely if the platform accelerations and angular rates were linked.

Including both types of these error would require detailed information to be

known about the sensors in question. For simulations in this thesis, none of errors

were specifically taken into account, but rather every measurement was corrupted

using its exact model. That is, the compass TCB was simulated with a TCB that was

independent of the platform tilt. More rigorous tests where errors that are coupled

with the main sources seen in real data would be appropriate for future work.

5.2.2 Improved Sensor Models. Many of the sensor models used in this

research are crude in nature. That is, many models had to be overly simplified in

order to make a project of this size manageable in the constricted time frame. More

detailed measurement models including other errors would provide a relatively simple

and straight forward update to this work without requiring major code modification.

The main source of difficulty would be the additional attention to physical sensor

parameters.

As an example, the tilt induced errors previously described can be minimized

if information about the tilt and its relationship to the compass error is known. This
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issue is addressed in literature [18]. In this thesis, the induced error is never actually

related to the roll and pitch states, but only accounted for using a TCB that is only

related to the measurement. Information about the bias must be interpolated from

the filter estimate of what the heading measurement should be. A simple relationship

could be included if the measurement covariance was increased by being linked to

the platform tilt states. More detailed approaches would also involve correcting the

measurement if enough information about the sensor was known. Likewise a more

representative measurement model of the inclinometer could be developed, where the

bias is dynamically coupled with the acceleration and angular rate states.

5.2.3 Alternate Camera Implementation. As used in this project, the main

benefit of stereo vision that made it superior to single camera vision was its ability

to estimate the distance to a feature, by estimating the intersection of the camera

feature projection vectors. This ability is not taken advantage of after initialization,

but could be used in a method very similar to that of the 3D laser scanner for esti-

mating position change between images. This could be implemented by forming the

complete projection vector to the feature at each measurement. The actual camera

model could then be modeled with relative positioning that does not possess such

strongly correlated errors with the estimate position and attitude states and would

be implemented as a delayed-state sensor. This implementation would not require

feature estimation which would significantly lower computational burden.

An alternate form of navigation could be implemented with the monocular cam-

era sensors as well similar to the stop sign sensor. By cataloging objects that could

be recognized, absolute position could be gained using only an monocular camera

coupled with an object detection. This would require considerable overhead however

as the objects must be placed ahead of time and kept track of. A similar approach is

taken in this project with the RFID tags, but with the camera, attitude information

could also be gained using the same camera model employed in this project.
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5.2.4 Detailed Platform Models. Higher detail platform models would pro-

vide valuable insight into this research. A simple improvement would involve con-

straining motion in each platform to the body forward and reverse axis. This would

significantly improve the utility of sensors that provide low observability in higher

dimensions such as odometers, step sensors, and ranging devices. More complicated

improvements could be made by constructing detailed models that considered the

physical characteristics of the platforms. These models could even display adaptive

behavior such as seen in [21] where during times when there is high certainty of the

platform navigation, the platform model parameters can be estimated.

5.2.5 Alternate Filter Implementations. Many options exist for integrating

all the sensors described in this thesis. As previously described, the EKF is far from

a perfect implementation and many other filters such as the unscented Kalman filter

(UKF) and particle filter are widely considered more accurate. This is especially

true with the particle filter for cases where estimated quantities or measurements

are highly nonlinear and/or whose errors are not accurately described by a Gaussian

distribution. Using the UKF would certainly simplify implementation by avoiding

linearization of equations. Use of the UKF is considered superior to the EKF and

even rivals the particle filter in terms of accuracy with a computation time on the

same level as that of the EKF [32].

5.2.6 Camera/ 3D Laser Fusion. In a project with this many sensors, it

might seem odd to introduce another sensor to the list for future discussion, however

the camera and 3D laser scanner provide an intriguing sensor combination that mini-

mizes many of the faults observed in the sensors individually. As described in previous

research, the camera and 3D laser pair would provide an excellent new addition to

the sensor list for this massive project.
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